
Manage quality processes

with Bugzilla

 An open-source bugtracker and testing tool

initially developed by Mozilla.

 Initially released by Netscape in 1998.

 Similar to many in-house bug-tracking and testing

tools developed in leading IT firms.

 Have been used widely in open-source code and

developments

 Developed on Perl. It is built on,

 A database, usually MySQL, PostgreSQL, or

Oracle;

 Web server, i.e. Apache, or Microsoft IIS.

 A suitable SMTP server.

Birth Certificate of a Bug:

Bugzilla in a Nutshell

Bugzilla provides the following services,

 User management, a user can be a bug submitters, a

developer, and a voter.

 Complete bug life cycle management, including creation,

handling, tracking and closing of a bug.

 Support Orthogonal Defect Classification.

 A user can record orthogonal factors such as trigger,

severity, components, ...

 Improve the visibility of quality processes, for example,

one can query bugs by,

 Component,

 Developers assigned to.

Birth Certificate of a Bug:

Bugzilla in a Nutshell

Bugzilla around world
Free Software Projects

Mozilla: https://bugzilla.mozilla.org/

Linux Kernel: http://bugzilla.kernel.org/

Gnome: http://bugzilla.gnome.org/

KDE: http://bugs.kde.org/

Apache Project: http://issues.apache.org/bugzilla/

Open Office: http://www.openoffice.org/issues/query.cgi

Eclipse: http://bugs.eclipse.org/bugs/

Linux Distributions

Red Hat: https://bugzilla.redhat.com/bugzilla/

Mandriva: http://qa.mandriva.com/

Gentoo: http://bugs.gentoo.org/

TurboLinux: https://bts.turbolinux.co.jp/bugtraq/

Novell: https://bugzilla.novell.com/

Companies

NASA: http://itos.gsfc.nasa.gov/~bugzilla/

Facebook: http://bugs.developers.facebook.com/

Plus Akamai, Nokia, The New York Times, Yahoo! and many more..Mozilla firefox

Bug Life Cycle

 This diagram

implies a generic

quality process.

 You need to

define your bug

life cycle in your

test strategy and

test plan

documents.

Birth Certificate of a Bug:

Create a Bugzilla Record

 First choose product,

 Necessary fields:

 Component

 Assign To: gets filled in automatically with default

assignee for the component

 Summary: pitchy, one-line description

 Description: complete bug description. All technical

details needed to reproduce the bug, including,

 Trigger, reproduction steps, error outputs, etc.

Bugzilla and SVN

 It is important to record your changes using
SVN revision number.

 Other can know when and how a bug is fixed.

 Cross-reference bugs with svn log entries. A
two-step process:

 When submitting a change to SVN, you SVN log
message comment shall include a line “bug# xxxx”
to record which bug this change is related to.

 In the bug: What changes were made to the

source code to fix this bug?

 Cut and paste your submission log, and paste it in the

description field of a bug.

Bugzilla @ senior design

 A bugzilla server has been set up,

 design.tricity.wsu.edu/bugzilla.

 Each of you will receive your bugzilla acount.

 Use bugzilla to track bugs and tasks.

 Your project manager will create a task for each
milestone objective, and assign it to the proper
team member.

 Integrate bugzilla into your team process.

 You shall document the usage of bugzilla in test
strategy and/or test plan.

 What is discussed here is a generic process, your
team needs to modify it to fit your own process.

Version Control with
Subversion

Subversion System

 For managing large projects with multiple people
 widely used, open source. initiated in 2000 by CollabNet Inc.

 In 2007, No.1 market share in Software Configuration

Management (SCM) software and a strong performer in

Software Configuration and Change Management (SCCM).

 Use in many open-source projects such as Apache, Google

code, etc.

 works across network as client-server

 Fixes many of shortcomings of CVS, for example, it

can preserve file/directory history when a user,
 Delete a file

 Rename/move a file.

Subversion System

 store and retrieve all versions of all directories and files in a

project

 usually source code

 also documentation, tests, binaries, ...

 support multiple concurrent users

 independent editing of files

 merged into single version

SVN Basics

 Files are stored in a centralized repository

 Contains a database of files and directories, and internal version

information

 Can be local or remote.

 Why version control system?

 Things we want to avoid :

SVN Basics

 Developers checkout a private working-copy

of the project

 Modifications are made locally

 When a developer is satisfied with the changes, a

commit propagates them to the repository

 Revision numbers

 Each commit of the project gets a revision number

 Unlike CVS, a SVN revision number is an integer.

 The initial revision number is 0

Tags, Branches, and Directories

SVN support tags and branches using directories.

 Unlike CVS, svn doesn’t make difference among tags, branches, and directories.

 A typical file structure of SVN, usually you create 3 directories:

 Trunk: contain head revision.

 Tags: tag your files.

 Branches: different branches of same file.

 A typical scenario of tags and branches, and merging difference revision.

2 3

4

5

1

6

7 8

9

10 12

11

13

14

15 16

Trunks

Tags

Discontinued

Development branch

Merges

Branches

• A new tag will be created by creating a new directory under “tags”.

• A new branch will be created by creating a new directory under “branches”.

• New branch/tag is created in repository using “copy” command.

Get Started

 SVN uses client-server architecture.

 Client side commands start with “svn”

 Server side commands start with “svnadmin”

 Create a new repository (serve-side command create, executed on

the server, e.g. elec.tricity.wsu.edu):

 svnadmin create /home/svn/cptsXXX/username, where cptsXXX is this

class.

Get Started

 Setting up the files (client-side command import, performed on your

working machine):

 Build the following directory structure on your local machine:

 ../homework1/branches/

 ../homework1/tags/

 ../homework1/trunk/

 Import into repository:

 cd to your local homework1 directory

svn import ../homework1

svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/username -m

“initial import”

 -m stands for “--message”, the log information.

 SVN supports a set of access methods.

 Possible access methods: file: svn: svn+ssh: http: https:

Client-Side Commands

 Getting the source (client-side command checkout):

 svn checkout

svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/usern

ame

 After you edit your files, commit changes (client-side command

commit):

 svn commit -m “Added comments” foo.c

 “svn update” updates the current work version of file.

 Sample output of update

 U Map.java - local copy was updated with changes from

repository

 A Map.java - file was added

 Map.java - file was deleted

 Map.java - file was replaced

 Map.java - file was successfully merged

Client-Side Commands

 Add files to repository:

 svn add main.java

 Important: you need to use commit to actually add the file to

the repository

 It is always a good practice to check out files in a clean directory to

make sure that the file is committed.

 Remove files from the repository:

 svn delete extrafoo.java

 Commit to actually remove the file from the repository.

Client-Side Commands

 Copy files: svn preserves version history via copy

 Copy is the way to tag revisisions and/or create new branches

svn copy
svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/username/homework1/trunk

svn+ssh://username@elec.tricity.wsu.edu/home/svn/cptsXXX/username/homework1/branc

hes/mybranch

 Move files:

 svn move file_to_move new_path

 Create directories:

 svn mkdir directory_name

Client-Side Commands

 “svn diff”: check the different between two revisions.

 “svn diff -r N” compares the current working version against

the version N.

 “svn diff -r N:M” compares the revision M against the version

N. For example:

 “svn diff -r HEAD” compares the current working version

against HEAD revision.

 “svn diff -r HEAD:COMMITTED” compares the committed

revision against the HEAD revision.

 Reverting to version in repository: svn revert

Client-Side Commands

 “svn merge”: merge two revisions.

 As an improvement to CVS, SVN can merge the difference

between two different revisions to another revision.

 For example, suppose you want to merge mybranch@revision

3 to trunk, you can issue the following command on your

working trunk copy:

 svn merge –r N:M svn+ssh://home/svn/user_name/myproj/mybranch

Client-Side Commands

 If a developer submitted a change before you do, and then

both of you change the same line of code, then there is a

conflict when you update your working copy.

 In case of conflict, 3 additional files are created:

 Foo.java.mine

 Foo.java.rOLDREV

 Foo.java.rNEWREV

 Manually resolve the conflict, delete all other files, then

commit

 You can also check the potential conflictions without

updating: svn status

Client-Side Commands

 Looking at log messages: svn log

 Displays a list of all commit messages

 Tracking changes

 svn annotate

 Displays the file line by line, with the name of the person

that last

 modified that line

Use of SVN in class

 svn is installed on ELEC system.

 Each of you has a personal repository, accessible only by yourself

and me.

 For your project, a repository will be created for your team.

 An important note: please don’t delete/rename repository directly

on ELEC system using native file system operations. Doing so will

destroy the integrity of your repository.

 We will make extensive use of SVN as part of tools we used to

standardize our processes. It will be used in,

 Homework submission;

 Concurrent code development in course project;

 Tracking website changes, etc.

Use of SVN in class

 You can access SVN from your home using svn+ssh

protocol.

 You may install SVN on your linux machine, or,

 Use tortoisesvn on Windows.

 Many modern IDEs, such as netbean for java, include the support for

SVN so you can check out the code directly through these IDEs.

