
Practical UML Modeling with

Rational Software Architect

Basic Facts

 IBM Rational Software Architect is the latest generation of Rational

Rose UML modeling tools

 ROSE = Rational Object-oriented Software Engineering

 First developed by James Rumbaugh, Ivar Jacobson, and Grady

Booch in Rational Software as part of efforts to support model-

based design for object-oriented languages.

 These three guys proposed UML.

 Rational Rose was introduced in OOPSLA’92 as the first UML-

based modeling tool.

 Rational was acquired by IBM in December 2002 for 2.1 Billions.

 Rational Rose and its successor IBM Rational Software Architect are

still the leading UML-based modeling tools by far.

Basic Facts

 Rational Software Architect is an integrated visual modeling

tool for development of object-oriented software.

 Rose uses UML to provide graphical methods for non-

programmers wanting to model business processes as well

as programmers modeling application logic.

 Developed on the Eclipse platform.

 Eclipse is a platform for building, deploying, and managing software

across the lifecycle.

 The Eclipse platform encourages rapid development of integrated

features based on a plug-in model.

 A wider range of plug-in is available, including the support for SVN.

Homework/project use

 Rational Software Architect (RSA) has been installed on

all CS lab machine and ELEC.

 To launch it, use “/cslab/bin/rational”

 You can obtain a copy of RSA for use in senior design.

 Full featured standard edition for Linux/Windows. Free of

charge. To obtain it,

 Download the IBM academic license agreement form by following

the link in the course website;

 Send me an email containing the following sentence: “I have read

and accepted IBM agreement for IBM academic initiative.”

 Upon receiving your email, I will send you instruction to download

your copy.

UML: an overview

Why design matters

Requirement
Modeling

Use-case diagram

Structural Modeling

Component diagram;
Deployment diagram

OO modeling

Class diagram

Behavioral
Modeling

State diagram;
Sequence diagram;
Activity diagram;

Collaboration diagram

UML: 360°view of design

Platform-
Independent

Model

Code-based Development

IT
E

R
A

T
E

Requirements

Platform-
Specific
Model

Business Requirement:

• Textual requirement;

• Business analysis.

Application analysis:

• Component diagram;

• Deployment diagram.

Application use-cases:

• Use-case diagram.

Application design:

• Component diagram;

• Deployment diagram.

OO design:

• Class diagram.

UML: design workflow

UML Modeling with Software Architect

Rational Architect supports UML 2.0, including

the following diagrams,

 Use-case diagram

 Class diagram

 State Diagram (StateChart)

 Interaction Diagrams, including,

 Sequence diagram

 Collaboration diagram

 Component Diagram

 Deployment Diagram

 …

Diagrams

Project

Component diagram

Class diagram

Elements

class

Component

Models

Palette for new

element

Property for selected

element

Component diagram

UML modeling with Software Architect:

examples

Software Architect: IDE

Software Architect uses a hierarchy to specify models.

 Each session contains a workspace.

 At the launch, software architecture will ask your workspace directory.

 Among other things, it store your personal configuration for underlying

projects.

 Each workspace contains multiple projects.

 A project is the collection of models, or a case, you are working

on.

 It can be located in a directory different from workspace

directory.

 It can be shared by different workspace.

 There is a variety way to incorporate a project into a workspace,

e.g., using existing project files, using CVS or SVN etc.

To activate this dialog, right click in

Project explorer, choose “import project”

Add existing project to a

workspace

Import project directly from a

SVN repository.

Software Architect: IDE

 Each model may contain several UML diagrams to express

the different “views” of a model, for example,

 A class diagram provides inheritance hierarchy and

associations among classes.

 A component diagram provides the architect design.

 Software architect supports diagrams defined in UML 2.0.

 Each model may contain several elements, whose relations

are defined in diagrams.

 RSA lists all the elements with their hierarchy in project

explorer for easy navigation of these elements.

Software Architect: IDE

 Elements are part of “unified” model and they are

shared by different diagrams,

 Sharing elements provide consistent among diagrams, for

example, a class in a class diagram can also be used to,

 define an object in a sequence diagram.

 This is very useful in a team development

environment, where different designers work on

different diagrams (and aspects) for the same model.

 To maintain the consistency, you need to merge models

developed by different designers.

UML modeling with Software Architect:

examples

Class Diagram

Class Diagram

class

association

inheritance
Properties of classes and relations

can be customized using

Property view

Adding Elements

1
Drag an existing element

from the Project

Explorer view.

+

2
Click a tool in the diagram editor’s

tool palette and then click inside the

diagram.

Hover or click the mouse in the diagram to make the action bar appear. Select the

element to insert. Hover over the new model element to use the action bar to add

details (attributes and operations).
3

Property of Class

Property of Class

Property of Class

Property of Association

Component Diagram

package

component

usage

Interface

realization

Interface

Property Views

Property Views

RSA in action

Integration with software development process

Configuration Management (CM)

 CM allows change in software assets to occur
in a structured, controlled, and repeatable fashion.

 A CM tool can:

 Give team members simultaneous
access to models

 Control who can update
different model elements

 Help introduce changes
in a controlled manner

 Maintain the evolutionary history
of a model and its elements

 A CM process defines how tools will be used to
manage change in a project.

 We use SVN for CM.

Business.emx src

Repository

SCM Best Practices: Model Partitioning

 Partition a model to avoid

unnecessary merges

 Factors to consider when deciding

how to partition a model:

 Stabilize abstraction levels

 Minimize dependencies

between models

 Establish ownership policies

 Avoid broken references

 To manage partitions, you can:

 Create fragments

 An element that has been converted into a
fragment has this icon:

 Create new models from packages

 A package that has been made into a
model has this icon:

 Absorb fragments back into the model

 Copy packages from partitions

back into the main model

Model Partitioning

Creating a model from a package automatically leaves a

shortcut reference to the new model where the package used

to be.

Creating a fragment from a model element adds an adornment to the

element and creates a separate file for that element.

Partition and Fragment Files

 After you have created a partition and a

fragment, Rational Software Architect will

create new files to represent these elements.

You can view all of the files in the Navigator

view.

Design Model.emx is the original model

that you started with.

you have two fragments that have been

created in relationship to this model. So

you have two .efx files within your project.

In addition, you specified that

you wanted to convert the

presentation package into its

own model. So there is another

.emx file.

 Don’t forget to add and commit your newly created

files to SVN.

 Right-click the file, choose team/add to version

control, and then commit.

Compare and Merge Models

 In a typical team environment, team members need to

constantly merge their development work to a common code

base. True to designs as well.
 Merging is almost always inevitable in a team development environment,

 Rational Software Architect allows you to merge model and

diagram files using the compare and merge utility.
 Compare models to identify changes between model versions.

 Merge models when:

 Parallel development occurs

 Alternative approaches are explored

 Use wisely: avoid situations that require frequent merging.
 Merge is expensive: think about how much self-inflicted pains you and your

team may have when you have to solve merge confliction.

 Fragmenting your model wisely to avoid unnecessary mergers.

Compare Editor

Structural Differences

•Accept or Reject changes
Merged Model

Right ContributorLeft Contributor

Merging Models

 Begin with a base

contributor, the common

ancestor of the models

you wish to merge.

 Have up to three

contributors (modified

versions of the base

model) in a merge session.

2

3

4

5

Contributor 1

Base

Contributor

Contributor 2

1

Merge

Structural Differences

•Accept or Reject changes
Merged result

Left Contributor Right ContributorAncestor

Caution: always remember to save a

copy, then override the existing file, and

submit to SVN.

RSA will not commit changes

automatically to SVN!

