
Test reactive systems with Büchi automata: acceptance condition coverage criteria
and performance evaluation

Bolong Zeng and Li Tan
School of Electrical Engineering and Computer Science

Washington State University
Richland, WA 99354
{bzeng, litan}@wsu.edu

Abstract—Büchi automata have been used to specify and
reason linear temporal requirements of reactive systems. A
reactive system interacts with its environment constantly, and
its executions may be modeled as infinite words. A key question
in testing a reactive system is how to make testing relevant
to the system’s requirement, that is, to focus testing on the
required behaviors in terms of infinite words. We propose a
specification-based testing technique that tests a reactive system
with respect to its requirement in Büchi automaton. At the
core of our approach is a metric measuring how well a test
suite covers the acceptance condition of a Büchi automaton.
Acceptance condition is a key element of Büchi automaton
defining infinite words. We propose weak and strong variants of
coverage metrics and their related test criteria for applications
requiring tests of different strengths. We propose a model-
checking-assisted algorithm to automate test-case generation
for proposed criteria. In addition to debugging a system, our
proposed approach may be used for revealing problems with
system requirements. We propose an algorithm for refining a
requirement encoded in Büchi automaton. Finally, we evaluate
the performance of the proposed test criteria using cross-
coverage comparison. The result indicates that our approach
improves the effectiveness of testing with more efficient test
cases targeted for system requirements.

Keywords-reactive systems; specification-based testing; Büchi
automaton; model checking.

I. INTRODUCTION

Reactive systems refer to systems constantly interacting
with their environments. Many of highly dependable systems
are reactive systems: they are expected to interact with their
environment (e.g. users, physical objects, etc.) even under
adversary condition. Examples of such systems include air
traffic control systems and nuclear reactor control systems.
To ensure correct functioning of these systems, engineers of-
ten deploy a mix of Verification and Validation (V&V) tech-
niques. Two of the most frequently used V&V techniques
for reactive systems are testing and formal verification.

Testing examines a system by checking its behavior under
a given set of stimuli. Based on the “trial and error” ideology,
testing has been an essential part of many V&V processes.
In comparison, formal verification refers to a variety of
techniques that establish the correctness of a system against
its formal requirement, through a mathematically rigid proof.

Formal verification techniques such as model checking have
received much attention from research community, and they
are increasingly adopted in industry as a powerful tool to
verify designs of safety-critical systems.

Testing and formal verification are two complementary
V&V techniques, each of which has its own set of pros
and cons. Testing in general has a better scalability, and it
may be applied to both specification and implementation, for
example, in the case of model-based testing. Nevertheless,
a major drawback of testing, as notably noted by Dijkstra
is that testing only shows the existance of bugs, but unable
to proof otherwise [1]. In contrast, formal verification tech-
niques such as model checking build a mathematically sound
proof for the correctness of a design. Nevertheless, it does
not scale nearly as well as testing, and it is often applied to
a design or a model extracted from an implemented system,
instead of the actual implementation.

A research theme in the V&V field is how to harness the
synergy between testing and formal verification. Techniques
such as model-checking-based test case generation [2] have
been proposed to utilize such a synergy. In this paper we
are interested in specification-based testing with temporal
requirements. A consequence of the proliferation of formal
verification techniques, particularly model checking, is the
increasing availability of formal requirements. We want to
extend the use of formal requirements into testing. Our
objective is two-fold: (1) improve the effectiveness of testing
by centering it around formal requirements; and (2) improve
the efficiency of testing by developing a model-checking-
assisted test case generator for our proposed test criteria.

In this paper we study specification-based test for reactive
systems with a formal requirement in Büchi automaton.
We choose reactive systems as our subject because of their
practical importance in developing safety-critical systems.
The essence of a reactive system is its ability of performing
infinite executions. A challenge in testing a reactive system
is how to test these infinite behaviors. Many of previous
works on testing reactive systems (cf. [3], [4]), including
those of ours [5], have been focusing on testing finite pre-
fixes of infinite executions. In comparison we are developing
a testing technique focusing on features of infinite executions

themselves, that is, temporal patterns exhibited by an infinite
execution of a reactive system. Particularly, we consider re-
quirements encoded in Büchi automaton. Büchi automaton, a
type of ω-automata accepting infinite words, has been widely
used for specifying linear temporal behaviors of a reactive
system. It is also instrumental in developing linear temporal
model checkers: other formalisms such as Linear Temporal
Logic (LTL) are often first translated into Büchi automaton,
before used in model checking.

The first-order question in specification-based testing, or
any software testing for that matter, is to measure the
adequacy of a test suite. We define two coverage metrics
measuring how a test suite cover a requirement in Büchi
automaton. The metrics define how thoroughly a test suite
covers the acceptance condition of a Büchi automaton. Test
criteria derived from these metrics may guide test-case
generation and execution. A Büchi automaton differs from a
finite automaton in its acceptance condition, which enables
the Büchi automaton to accept infinite words. By focusing
on its acceptance condition, our approach centralizes testing
efforts on infinite executions of a reactive system.

To improve the efficiency of test generation, we also
propose model-checking-assisted test case generation algo-
rithms for proposed test criteria. By utilizing the coun-
terexample producing capability of an off-the-shelf model
checker, these algorithms automate the test case generation
for reactive systems with Büchi automaton.

By deriving test cases from a reactive system model
and its formal requirement, our approach also provides a
powerful tool to detect the discrepancy between a model
and its requirement. In addition to debugging a system, our
approach may also be used for detecting the deficiency of a
requirement. The latter provides an opportunity for refining
the requirement, and thus reducing the gap between the se-
mantics of a requirement and a system implementation. We
propose a technique that automates the property-refinement
process, by reusing the information from model-checking-
assisted test generation algorithms.

To evaluate the performance of our approach, we con-
duct a computational study to compare the effectiveness of
the proposed acceptance condition coverage criteria against
other existing criteria, including traditional test criteria such
as branch coverage, as well as the other LTL or Büchi
automaton based test criteria introduced in [5], [6]. We select
samples from a diversified range of applications, includ-
ing software engineering (GIOP protocol for constructing
middleware), security (Needham public key protocol), and
autombile (a fuel system example). The results validate the
effectiveness of our approach.

The rest of the paper is organized as follows: Section II
prepares the notations used in the rest of the paper; Section
III introduces two variants of accepting state combination
coverage metrics and criteria for Büchi automata; Section IV
describes the model-checking-assisted test case generation

algorithms for the proposed criteria; Section V discusses the
requirement refinement using the feedback from the model-
checking-assisted test case generation; Section VI discusses
the result of our computational study on the performance
comparison between the new criteria and other existing test
criteria; and finally Section VII concludes the paper.

Related Works An important component of our approach is
a model-checking-assisted algorithm that utilizes the coun-
terexample mechanism of a model checker to generate test
cases. Model checkers are able to generate counterexamples
of a model that violates a temporal formula that describes a
desired property. Taking advantage of such ability of model
checkers to assist test generation has received a significant
amount of attention in recent years. One of the core problem
in model-checking-assisted test generation is how to shape
the test objectives into temporal properties that can be fed to
model checkers. Both [7] and [8] have discussed the usage
of formal specification in software testing. Gaudel further
provided an overview for the conjunction area of testing and
model checking, encouraging a more clear and uniformed
field for the “industrial actors” [9].

Various works have shown that traditional structural test
criteria can be used as the core standard for test generation
via model checkers. For instance, Fraser et al. show that
Modified Condition/Decision Coverage (MC/DC) can be
encoded in Computational Tree Logic (CTL) [10], and then
be used by a model checker such as NuSMV for generat-
ing tests. The authors also compare an array of different
test criteria such as logic expression coverage criteria and
dataflow criteria [10]. In [2], Hong et al. expressed the
dataflow criteria in CTL. All these works presented their
methods of translating one or more existing structure-based
test objectives into a temporal property, such as CTL or LTL.

A key feature of our formal-specification-based testing
technique is that it is built upon Büchi automaton, which
enables syntax-based as well as semantic-oriented test cri-
teria for linear temporal properties. Our work may be
seen as an extension of [11], which proposed test criteria
based on syntactical mutations of LTL formulae. To support
semantics-oriented testing, we used Büchi automaton as the
underlying formalism in [5] and [6], which explore state and
transition coverage of Büchi automaton respectively. Büchi
automata have the same expressibility as LTL formulae,
but they can be minimized to reduce syntax variant while
maintaining the same semantics. This work extends [5] and
[6] with test criteria on the acceptance condition of a Büchi
automaton, which is its key element for modeling infinite
executions of a reactive system.

II. PRELIMINARIES

A. Kripke Structures, Traces, and Tests

We model systems as Kripke structures. A Kripke struc-
ture is a finite transition system in which each state is

labeled with a set of atomic propositions. Semantically
atomic propositions represent primitive properties held at a
state. Definition II.1 formally defines Kripke structures.

Definition II.1 (Kripke Structures). Given a set of atomic
proposition A, a Kripke structure is a tuple 〈V, v0,→,V〉,
where V is the set of states, v0 ∈ V is the start state,
→⊆ V × V is the transition relation, and V : V → 2A

labels each state with a set of atomic propositions.

We write v → v′ in lieu of 〈v, v′〉 ∈→. We let a, b, · · ·
range over A. We denote A¬ for the set of negated atomic
propositions. Together, P = A ∪ A¬ defines the set of
literals. We let l1, l2, · · · and L1, L2, · · · range over P and
2P , respectively.

We use the following notations for sequences: let β =
v0v1 · · · be a sequence, we denote β[i] = vi for the i + 1-
th element of β, β[i, j] for the subsequence vi · · · vj , and
β(i) = vi · · · for the i-th suffix of β. A trace τ of the Kripke
structure 〈V, v0,→,V〉 is defined as a maximal sequence of
states starting with v0 and respecting the transition relation
→, i.e., τ [0] = v0 and τ [i − 1] → τ [i] for every i < |τ |.
We also extend the labeling function V to traces: V(τ) =
V(τ [0])V(τ [1]) · · ·.

Definition II.2 (Lasso-Shaped Sequences). A sequence τ is
lasso-shaped if it has the form α(β)ω , where α and β are
finite sequences. |β| is the repetition factor of τ . The length
of τ is a tuple 〈|α|, |β|〉.

Definition II.3 (Test and Test Suite). A test is a word on 2A,
where A is a set of atomic propositions. A test suite ts is a
finite set of test cases. A Kripke structure K = 〈V, v0,→,V〉
passes a test case t if K has a trace τ such that V(τ) = t.
K passes a test suite ts iff. it passes every test in ts.

B. Generalized Büchi Automata

Definition II.4. A generalized Büchi automaton is a tuple
〈S, S0,∆,F〉, in which S is a set of states, S0 ⊆ S is the
set of start states, ∆ ⊆ S × S is a set of transitions, and
the acceptance condition F ⊆ 2S is a set of sets of states.

We write s → s′ in lieu of 〈s, s′〉 ∈ ∆. A generalized
Büchi automaton is an ω-automaton, which can accept the
infinite version of regular languages. A run of a generalized
Büchi automaton B = 〈S, S0,∆,F〉 is an infinite sequence
ρ = s0s1 · · · such that s0 ∈ S0 and si → si+1 for every
i ≥ 0. We denote inf(ρ) for a set of states that appear for
infinite times on ρ. A successful run of B is a run of B such
that for every F ∈ F , inf(ρ) ∩ F 6= ∅.

In this work, we extend Definition II.4 using state labeling
approach in [12] with one modification: we label the state
with a set of literals, instead of with a set of sets of
atomic propositions in [12]. A set of literals is a succinct
representation of a set of sets of atomic propositions: let L
be a set of literals labeling state s, then semantically s is

labeled with a set of sets of atomic propositions Λ(L), where
Λ(L) = {A ⊆ A|(A ⊇ (L∩A))∧(A∩(L∩A¬) = ∅)}, that
is, every set of atomic propositions in Λ(L) must contain all
the atomic propositions in L but none of its negated atomic
propositions. In the rest of the paper, we use Definition II.5
for (labeled) generalized Büchi automata (GBA).

Definition II.5. A labeled generalized Büchi automaton
is a tuple 〈P, S, S0,∆,L,F〉, in which 〈S, S0,∆,F〉 is a
generalized Büchi automaton, P is a set of literals, and the
label function L : S → 2P maps each state to a set of
literals.

A GBA B = 〈A ∪ A¬, S, S0,∆,L,F〉 accepts infinite
words over the alphabet 2A. Let α be a word on 2A, B has
a run ρ induced by α, written as α ` ρ, if and only if for
every i < |α|, α[i] ∈ Λ(L(ρ[i])). B accepts α, written as
α |= B if and only if B has a successful run ρ such that
α ` ρ.

GBAs are of special interests to the model checking
community. Because a GBA is an ω-automaton, it can
be used to describe temporal properties of a finite-state
reactive system, whose executions are infinite words of an
ω-language. Formally, a GBA accepts a Kripke structure
K = 〈V, v0,→,V〉, denoted as K |= B, if for every
trace τ of K, V(τ) |= B. Efficient Büchi-automaton-based
algorithms have been developed for linear temporal model
checking. The process of linear temporal model checking
generally consists of translating the negation of a linear
temporal logic property φ to a GBA B¬φ, and then checking
the emptiness of the product of B¬φ and K. If the product
automaton is not empty, then a model checker usually
produces an accepting trace of the product automaton, which
serves as a counterexample to K |= φ.

III. ACCEPTING STATE COMBINATION
COVERAGE CRITERIA

A Büchi automaton differs from a finite automaton in its
acceptance condition, which enables a Büchi automaton to
accept infinite words. Since we are interested in testing a
reactive system, and particularly the temporal patterns of
its infinite executions, we focus on covering the acceptance
condition of a Büchi automaton. In what follows, we denote⋃
F = F0 ∪ · · · ∪ Fn−1, where F = {F0, · · · , Fn−1}.

Definition III.1 (Accepting State Combination). Given a
Büchi automaton B = 〈P, S, S0,∆,L,F〉, an accepting
state combination (ASC) C is a minimal set of states such
that (i)C ⊆

⋃
F; (ii)∀F ∈ F , F ∩ C 6= ∅.

We denote C(B) as the set of the ASCs of B. The
coverage metrics are thus about covering these ASCs.

Definition III.2 (Covered Accepting State Combinations).
Given a GBA B = 〈P, S, S0,∆,L,F〉, let C be one of B’s
ASCs,

1) A run ρ of B covers C if ρ visits every state of C
infinitely often;

2) A test t strongly covers C on B if t satisfies B and
every successful run induced by t on B covers C;

3) A test t weakly covers C on B if at least one run
induced by t on B covers C.

Intuitively, an ASC is a basic unit for the sets of ac-
ceptance states covered by a successful run. That is, any
successful run must visit every state of some ASC infinitely
often, as stated in Lemma III.3.

Lemma III.3. Given a Büchi automaton B =
〈P, S, S0,∆,L,F〉, ρ is a successful run of B if and
only if ρ covers some ASC of B.

Definition III.2 presents two different ways to cover an
ASC, due to the non-deterministic nature of a GBA. In the
strong variant, every successful run induced by a successful
test is required to visit the ASC infinitely often; and in the
weak variant, only one successful run induced by the test is
required to visit the ASC infinitely often. By Lemma III.4
the strong coverage criterion subsumes the weak one. Users
may pick and choose the type of coverage, depending on
the desired strength of testing set forth for an application.

Lemma III.4. An ASC C of a Büchi automaton B is weakly
covered by a test t if C is strongly covered by t.

Definition III.5 (Strong/Weak ASC Coverage Metric
and Criterion). Given a generalized Büchi automaton
B = 〈P, S, S0,∆,L,F〉, let C(B) be the set of
B’s ASCs, the strong (or weak) ASC coverage met-
ric for a test suite T on B is |δ′|

|δ| , where δ′ =

{C | t strongly (or weakly) covers C}, and δ = C(B). T
strongly (or weakly) covers δ if and only if δ′ = δ.

It shall be noted that the number of all the ASCs is
significantly smaller than the number of all the possible
combinations of acceptance states. The first is bounded by
O(mn) and the latter is bounded by 2m, where n = |F|
is the cardinality of F and m = |

⋃
F| is the number of

acceptance states. By focusing on covering ASCs instead of
all the combinations of acceptance states, we significantly
reduce the complexity of computing our coverage metrics.

IV. MODEL-CHECKING-ASSISTED TEST
GENERATION FOR ACCEPTING

STATES COMBINATION COVERAGE

To improve the efficiency of test case generation, we
develop a model-checking-assisted algorithm for generating
test cases under proposed criteria. The algorithm uses the
counterexample capability of an off-the-shelf linear temporal
model checker to generate test cases. One of the fundamental
questions in model-checking-assisted test generation is how
to specify test objectives in a formalism acceptable by a
model checker. The properties specifying test objectives

are often referred to as “trap properties” in the context of
model-checking-assisted test generation. In our case, “trap
properties” are defined in the form of Büchi automaton. We
synthesize a set of “trap (Büchi) automata” from the original
Büchi automaton, using graphic transformation techniques.

Definition IV.1 (ASC Excluding Automa-
ton). Given a Büchi automaton B =
〈P, S, S0,∆,L, F ≡ {F0, · · · , Fn−1}〉 and an
ASC C, an ASC excluding (ASC-E) GBA is
BC = 〈P, Se, Se0 ≡ S0 × {⊥},∆e,Le,Fe ≡
{F e0 , · · · , F en−1}〉, where,

1) Se = (S × (C ∪ {⊥}))−
⋃
s∈C{〈s, s〉}

2) F ei = {〈s, u〉 | s ∈ Fi ∧ u 6= ⊥}.
3) ∆e = {(〈s, u〉 → 〈s′, u′〉) | (s → s′) ∈ ∆ ∧ (u =

u′ ∨ (u = ⊥))}
4) Le(〈s, u〉) = L(s)

Intuitively speaking, for a Büchi automaton B and an ASC
C, its ASC-E-GBA BC accepts precisely B’s successful
runs, except for those visiting C infinitely often. BC does
so by extending B with additional copies. To distinguish
these copies, the states of the original copy (denoted as
B⊥) is indexed by the symbol ⊥, whereas the states of each
additional copy (denoted as B¬s) are indexed by a state
s ∈ C. B¬s inherits all the states from B except for s,
the very state indexing B (i.e. 〈s, s〉 in Definition IV.1.(1)).
Intuitively, B¬s accepts all the successful runs of B, except
for those visiting the indexing state s. Each copy B¬s
retains the transitions from B (except for, of course, the ones
associating with the indexing state s, which is not in B¬s).
In addition, for each transition of the original copy B⊥, say
〈s,⊥〉 → 〈s′,⊥〉, we create |C| copies of that transition,
each of which replaces the destination node 〈s′,⊥〉 with its
counterpart in a copy B¬t indexed by a state t ∈ C (Defini-
tion IV.1.(3)). Formally, for each transition 〈s,⊥〉 → 〈s′,⊥〉,
we add more transitions δ =

⋃
t∈C{〈s,⊥〉 → 〈s′, t〉}. We

refer to these new transitions as “bridging” transitions. Note
that these bridging transitions go one-way only, that is, they
jump from the original copy B⊥ to a copy B¬t, where t ∈ C.
There are no transitions linking B¬t back to B⊥. As a final
touch, only the copies indexed by the states of C, not the
original one, retain the acceptance condition. Since every
additional copy B¬s misses its indexing state s, it implies
that the indexing state is not part of the acceptance condition
of B¬s.

It follows from the construction of BC that a successful
run ρ of BC must satisfy the following conditions: (1) it
starts at B⊥ (i.e. the start states Se0 in Definition IV.1) and
can spend only a finite number of steps in B⊥, since B⊥
does not have an acceptance state (Definition IV.1.(2)); (2) at
some point, ρ will make a non-deterministic choice to take
a bridging transition to one of the copies indexed by a state
s ∈ C, say B¬s, and satisfy B¬s’s acceptance condition.
Clearly ρ is also a successful run of the original GBA B,

¬p ¬t

t

¬p ¬t

¬p

t

0S

2S1S

¬p ¬t

}},{{ 20 SSF =

Figure 1. A general Büchi automaton representing the LTL property
G(¬t ⇒ ((¬p U t) ∨G¬p)).

since each state on ρ may be mapped back to a state of B,
and the acceptance condition of the copy of B accepting ρ
is a subset of the acceptance condition of B. In addition,
because B¬s does not have s (Definition IV.1.(1)), ρ cannot
visit s infinitely often. Furthermore, no matter which copy
the ρ jumps to, there is no way that ρ can visit every state
of C infinitely often, since there is one state of C being
missed in that copy, i.e., its indexing state. It follows that a
successful run ρ′ of B becomes a successful run of its ASC-
E-GBA only if ρ′ does not visit every state of C infinitely
often. Interested users may refer to our full paper ([13]) for
the proof of Theorem IV.2.

Theorem IV.2. Given a GBA B = 〈P, S, S0,∆,L,F〉 and
an ASC C, BC = 〈P, Se, Se0 ,∆e,Le,Fe〉 be the ASC-E-
GBA for B and C, then a test t satisfies BC if and only if
B has a successful run ρ such that t ` ρ and inf(ρ) 6⊇ C.

As an example, consider a GBA in Figure 1. The GBA
represents LTL property φ = G(¬t⇒ ((¬p U t)∨G¬p)),
a temporal requirement used with the GIOP model [14] in
our experimental study. φ’s semantics is explained in Section
VI. Since its acceptance condition {{s0, s2}} contains only
one set of states, its ACSs are the singleton set of each
acceptance state, that is, {s0} and {s2}. Figure 2 gives an
ASC excluding automaton B{s0} with respect to the ASC
{s0}. B{s0} has two copies of B: the original copy B⊥ and
the copy indexed by s0, the only state in C. Note that the
indexing state itself s0 (i.e. 〈s0, s0〉) and its transitions are
removed from the copy B{s0}. These are represented by the
dashed circle and lines in Figure 2. The highlighted solid
links represent bridging transitions linking from the original
copy to the copy indexed by s0. Since the only acceptance
state, 〈s2, s0〉 exists in the copy B¬s0 , a successful run of
B{s0} must visit s2 (in the form of 〈s2, s0〉), not s0 (in the
form of 〈s0, s0〉), infinitely often.

Algorithm 1 generates a test suite strongly covering all
the ASCs of a Büchi automaton B. It makes use of ASC
excluding automata. For each of B’s ASCs, Algorithm 1

Algorithm 1 TestGen SC(B = 〈P, S, S0,∆,L,F〉, Km =
〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km

satisfies B
Ensure: Return a test suite ts such that ts strongly covers

every ASC of B and Km passes ts. Return ∅ if such a
test suite is not found;

1: C(B) = ASC Gen(B);
2: for every ASC C ∈ C(B) do
3: BC = 〈P, S × Cs ∪ ∅, S0 × ∅,∆e,Le,Fe〉;
4: τ = MC isEmpty(¬BC ,Km));
5: if |τ | 6= 0 then
6: ts = ts ∪ {V(τ)}
7: else
8: return ∅;
9: end if

10: end for
11: return ts;

constructs an ASC excluding GBA BC with respect to
C. ASC Gen is a sub-routine computing all the ASCs
for a GBA. We skip the details of ASC Gen due to the
space limit. Interested users may refer to our full paper
for the details [13]. The algorithm uses a model checker
to search for a successful run τ on the production of ¬BC
and Km, and τ is a successful run of ¬BC accepting Km.
MC isEmpty refers to the emptyness checking algorithm
in an off-the-shelf linear temporal model checker. If a run
exists, it returns with a test set containing t = V(τ), which
is a word accepted by ¬BC . Consequently, t cannot be
accepted by BC . Note that τ is a successful run of the
production of B and Km, therefore based on Theorem IV.2,
for every successful run ρ that t ` ρ, inf(ρ) ⊇ C. Based on
Definition III.2, ts is a test suite that strongly covers C.

Theorem IV.3. If the test suite ts returned by Algorithm
1 is not empty, then (i) Km passes ts and (ii) ts strongly
covers all the ASCs of B.

Compared with constructing an ASC excluding automa-
ton, constructing a Büchi automaton accepting only the runs
that weakly covers an ASC is relatively straightforward:
the new automaton may be obtained by removing from
the acceptance condition the states not in the ASC, that is,
replacing the acceptance condition with C. Definition IV.4
describes the process.

Definition IV.4 (ASC Marking Automaton). Given a
GBA B = 〈P, S, S0,∆,L,F〉 and an ASC C,
BC = 〈P, S, S0,∆,L,FC〉 is the ASC-Marking (ASC-
M) Büchi automaton for B with respect to C, in which
FC = {F ∩ C|F ∈ F}.

Clearly L(BC) ⊆ L(B), since the acceptance condition

¬p ¬t

t

¬p ¬t

¬p

t

¬p ¬t

¬p ¬t

¬p

 ,0S

 ,1S

¬p ¬t

 01,SS
 ,2S

 02,SS

}},{{ 02 SSF

¬p ¬t

 00,SS

B 0S
B

¬p ¬t ¬p

Figure 2. An ASC excluding general Büchi automaton for the ASC {s0} of the GBA in Figure 1.

of BC is a refinement of that of B, that is, ∀F ∈ F ,∃F ′ ∈
FC , (F ′ ⊆ F ′) and ∀F ′ ∈ FC ,∃F ∈ F , (F ′ ⊆ F).
Note that, FC in Definition IV.4 is a subset of 2C − ∅.
By Definition III.1, C has to be a minimal set of states that
∀F ∈ F , F ∩ C 6= ∅. Combine these two conditions, it is
straightforward

⋃
FC = C. Based on Definition II.4, this

means that for a run to be successful on BC , all states in
C must be visited infinitely often. Therefore we rewrite the
acceptance condition for BC as FC = {{s} | s ∈ C}, i.e., a
set of singleton sets of states in C. For the rest of the paper,
we consider ASC-M-GBA to be defined with the rewritten
acceptance condition.

Algorithm 2 generates tests that weakly cover the ASC
C. We construct an ASC-M-GBA BC in Algorithm 2, and
then search for a successful run on the product of BC and
the system model Km. If such run τ exists, the test case
t = V(τ) is then added to ts and return as the singleton test
suite. Since t ∈ L(BC) and L(BC) ⊆ L(B), t ∈ L(B). By
Definition IV.4 and Definition III.2, since τ is a successful
run of BC that weakly covers C on B, therefore t is a test
case that weakly covers C on B.

Theorem IV.5. If the test suite ts returned by Algorithm 2
is not empty, then (i) Km passes ts and (ii) ts weakly covers
all the ASCs of B.

Due to the space limit, we include our proof for Theorem
IV.3 and Theorem IV.5 in our full paper ([13]).

Algorithm 2 TestGen WC(B = 〈P, S, S0,∆,L,F〉, Km =
〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km

satisifies B.
Ensure: Return a test suite ts such that ts weakly covers

every ASC in C(B) and Km passes ts. Return ∅ if such
a test suite is not found;

1: C⊥ = ASC Gen(B);
2: for every ASC C ∈ C⊥ do
3: BC = 〈P, S, S0,∆,L,FC〉, where FC = {{s} | s ∈

C};
4: τ = MC isEmpty(BC ,Km));
5: if |τ | 6= 0 then
6: ts = ts ∪ {V(τ)};
7: else
8: return ∅;
9: end if

10: end for
11: return ts;

V. ASC-INDUCED PROPERTY REFINEMENT

ASC coverage metrics measure the conformance of a
design against a formal requirement in Büchi automaton.
Lacking of ASC coverage may be contributed either by
bugs in the design, or by the deficiency of the require-
ment, or sometimes by both. We develop an algorithm that
identifies the deficiency of the requirement and refines the
requirement, using the information collected from test case

generations (Algorithm 2).
We consider the refinement in terms of language in-

clusion, that is, if the language of an automaton B′ is a
subset of that of B, we refer to B′ as a refinement of B.
Given a Kripke structure K representing a system with its
requirement as GBA B, we develop an algorithm to refine
B if not every ASC of B can be weakly covered w.r.t. K.

Given a Kripke structure Km as a system model and a
GBA B = 〈P, S, S0,∆,L,F〉 as its requirement, the basic
steps of refining B w.r.t. B are described below:

1) Identify the set of ASCs C = {C0, · · · , Cn} of B that
are weakly covered w.r.t. Km. C may be identified by
Algorithm 2 during the test case generation;

2) Produce an automaton BC = 〈P, S, S0,∆,L,FC〉,
where FC = {F ∩ (

⋃
C) | F ∈ F}

Algorithm 3 TestGen RefineWC(B = 〈P, S, S0,∆,L,F〉,
Km = 〈S, s0,→,V〉)
[TestGen RefineWC()]
Require: B is a GBA, Km is a system model, and Km

satisfies B.
Ensure: Return a test suite ts such that ts weakly covers

all ASCs that can be covered in C⊥ and Km passes ts.
Also returns a Büchi automata with a refined acceptance
condition;

1: C⊥ = ASC Gen(B);
2: for every ASC C ∈ C⊥ do
3: BC = 〈P, S, S0,∆,L,FC〉, where FC = {{s} | s ∈

C};
4: τ = MC isEmpty(BC ,Km));
5: if |τ | 6= 0 then
6: ts = ts ∪ {V(τ)}
7: C = C ∪ {C}
8: end if
9: end for

10: BC = 〈P, S, S0,∆,L,FC ≡ {F ∩ (
⋃
C) | F ∈ F}〉

11: return ts and BC ;

For example, consider a Büchi automaton B with an
acceptance condition F = {F0, F1, F2}, in which F0 =
{s1, s2, s4}, F1 = {s2, s3, s4}, F2 = {s1, s3, s4}. The
ASCs for B would be C0 = {s1, s2}, C1 = {s2, s3}, C2 =
{s1, s3} and C3 = {s4}. Assume that only C0 and
C2 can be weakly covered w.r.t. a system K, we can
then refine B to BC , where BC’s acceptance condition is
{{s1, s2}, {s2, s3}, {s1, s3}}.

The entire process of property refinement may be auto-
mated by extending test generation algorithm, as described
in Algorithm 3. Clearly L(BC) ⊆ L(B), since the accep-
tance condition of BC is a refinement of the acceptance
condition of B. Moreover, by the construction of FC , BC
contains all the ASCs of B that can be weakly covered by

some tests passed by Km. Theorem V.1 states that the refined
automaton, BC , is still satisfied by Km. In other words, by
refining B to BC , we obtain a “restricted” version of the
property that more closely specifies a requirement for Km.
Due to the space limit, we omit the proof of Theorem V.1.
Interested readers may refer to the full length of the paper
for the details [13].

Theorem V.1. Given a GBA B and a Kripke structure
Km such that Km |= B, let BC be the GBA returned by
TestGen RefineWC(B,Km), then, (i) L(BC) ⊆ L(B)
and (ii) Km |= BC .

VI. EXPERIMENTS

To assess the performance of the proposed criteria, we
perform a computational study using cross-coverage mea-
surement. Cross-coverage measurement compares the effec-
tiveness of test criteria with respect to each other. It measures
how well a test suite generated for one criterion A covers
another criterion B. A higher percentage for A indicates
that A would be more effective in “covering” B, and hence
may induce a more effective test suite than B. To obtain
a close-to-reality measurement, we select testing subjects
from a diversified range of applications. The first subject is
a model of the general Inter-ORB Protocol (GIOP) from the
area of software engineering. GIOP is a key component of
the Object Management Group (OMG)’s Common Object
Request Broker Architecture (CORBA) specification [14].
The second model is a model of the Needham-Schroeder
public key protocol from the area of computer security.
The Needham-Schroeder public key protocol intends to
authenticate two parties involving with a communication
channel. Finally, our third subject is a model of a fuel system
from the area of control system. The model is translated by
Sabina Joseph [15] from a classic Simulink demo model[16].

Each model comes with one or more linear temporal
properties that specify its behavioral requirements. We se-
lected a representative property for each model to be used in
our computational study. For the GIOP model, the property
models the behaviors of a recipient during communication.
The LTL property for the Needham-Shroeder public-key
protocol is a liveness property requiring that an initiator can
only send messages after a responder is up and running.
Finally, the properties for the fuel system checks that under
abnormal conditions, the system’s fault tolerant mechanism
functions properly. Interested readers may refer to the full
paper [13] for the details of these models and properties.

For performance comparison, we select several tradi-
tional as well as newer formal-specification-based test cri-
teria. Based on the coverage for outcomes of a logic ex-
pression (c.f. [17]), branch coverage (BC) is one of the
most commonly-used structural test criteria. We include
both transition and state variations of strong coverage cri-
teria (SC/strong, TC/strong) and weak coverage criteria

ASC
coverage criteria

Specifications given
in GBA

Graph
transformation

Trap properties
in GBA

GBA
negation

Model checker

Test
case

Linear
counterexample

System model

Figure 3. The workflow of model-checking-assisted test case generation under ASC coverage criteria for Büchi automaton.

(SC/weak, TC/weak) for Büchi automaton[5], [6]. We also
include a property-coverage criterion (PC) for Linear Tem-
poral Logic (LTL) [11]. In our experiment, the performances
of these criteria, and two ASC coverage criteria (ACC/stong
and ACC/weak) are compared with each other.

In [18] we developed a tool to compare the effectiveness
of test criteria in context of model-checking-assisted test
case generation. We extend the tool to support the proposed
ASC criteria. We use GOAL [19] to perform graph trans-
formation that constructs ASC-E-GBAs and ASC-M-GBAs.
We use SPIN [20] as the underlying model checker. Figure 3
shows the workflow of generating tests with model checking
under ASC coverage criteria for Büchi automaton. Details
of this procedure and our previous computational study can
be found in [21], with a different set of subjects and criteria.

Table I shows the cross-coverage measurement. The num-
ber in each cell indicates the precentile coverage of a test
suite generated for the criterion on the row with respect
to the criterion on the column. Numbers on diagonal cells
(marked with parentheses) represent the coverage of a test
suite generated for the same criterion. A less-than perfect
coverage on these diagonal cells indicates potential defi-
ciency of a model and/or a requirement. For instance, the
test suite of the fuel system model for ACC/weak may only
reach 67% coverage upon all the ASCs because the property
has an ASC that cannot be covered.

The results show that our proposed ASC coverage criteria,
especially the strong variant, exhibits a competent perfor-
mance. It is on par with the other GBA based criteria, and
falls only barely behind the branch coverage criterion. It
shall be noted that the test suite generated for the branch
coverage criterion is much larger than those generated for
the property-based test criteria, including our ASC criteria,
indicating that the property-based criteria can potentially
make testing more effective by producing smaller and more
focused test suites. Interested readers may refer to the full

paper [13] for the comparision on the measurements of
generated test cases, including sizes, trace lengths and time.

The test suites for ASC coverage criteria, while compe-
tent, did not achieve full branch coverage. This is because
we only use one temporal property for each model, and the
property does not cover all the functional aspects of the mod-
els. For instance, the property for the GIOP model specifies
the recipient’s behavior at “waiting” or “receiving” modes,
it does not concern other modes of operations. Therefore,
the generated test suite skips some code segments, which
leads to a less-than perfect branch coverage.

This observation leads to an important feature of property-
based test criteria, including our ASC coverage criteria. That
is, the performance of these criteria are heavily influenced
by the quality of underlying requirement. A thorough re-
quirement touching more aspects of a model may result in
a test suite with better quality. In Section V we capitalized
this observation via our ASC-induced property refinement.
Alternatively, a more complete set of temporal properties
that address multiple aspects of a model could also greatly
improve the performance on this part.

Finally, the results above also establish that ASC coverage
criteria correlate well with the Büchi automaton-based state
and transition coverage criteria. The strong variant performs
similarly as the state and transition coverage criteria, while
the weak variant exhibits the result that are somewhat in
between. Intuitively, a path covering an ASC also covers the
states and transitions on it. Although these coverage criteria
cover some elements of Büchi automata, ASC criteria are
not merely an extension of Büchi automaton-based state and
transition coverage criteria. ASC criteria concern temporal
patterns of infinite words, whereas state and transition cover-
age criteria can only test temporal patterns of finite prefix of
infinite words. The essence of Büchi automaton is its ability
of modeling temporal patterns of infinite words, not just
their finite prefixes. Therefore, ASC criteria lend engineers

Table I
CROSS-COVERAGE COMPARISON RESULTS

GIOP
BC PC SC/strong SC/weak TC/strong TC/weak ACC/strong ACC/weak

BC (77%) 75% 100% 100% 100% 100% 100% 100%
PC 66% (75%) 100% 100% 100% 100% 100% 100%
SC/strong 66% 75% (100%) 100% 100% 100% 100% 100%
SC/weak 66% 75% 100% (100%) 100% 100% 100% 100%
TC/strong 66% 75% 100% 100% (100%) 100% 100% 100%
TC/weak 66% 75% 100% 100% 100% (100%) 100% 100%
ACC/strong 66% 75% 100% 100% 100% 100% (100%) 100%
ACC/weak 66% 75% 100% 100% 100% 100% 100% (50%)

Needham Protocol
BC PC SC/strong SC/weak TC/strong TC/weak ACC/strong ACC/weak

BC (86%) 100% 100% 100% 100% 100% 100% 100%
PC 47% (100%) 100% 100% 100% 100% 100% 100%
SC/strong 47% 100% (100%) 100% 100% 100% 100% 100%
SC/weak 28% 0% 0% (100%) 0% 100% 0% 100%
TC/strong 47% 100% 100% 100% (100%) 100% 100% 100%
TC/weak 40% 0% 0% 100% 0% (100%) 0% 100%
ACC/strong 47% 100% 100% 100% 100% 100% (100%) 100%
ACC/weak 30% 0% 0% 100% 0% 100% 0% (100%)

Fuel System
BC PC SC/strong SC/weak TC/strong TC/weak ACC/strong ACC/weak

BC (82%) 25% 75% 50% 86% 33% 67% 67%
PC 78% (100%) 50% 50% 29% 33% 67% 67%
SC/strong 75% 100% (50%) 50% 29% 33% 67% 67%
SC/weak 64% 25% 75% (50%) 86% 33% 67% 67%
TC/strong 75% 100% 100% 50% (29%) 33% 67% 67%
TC/weak 67% 25% 75% 50% 86% (33%) 67% 67%
ACC/strong 75% 100% 50% 50% 29% 33% (67%) 67%
ACC/weak 55% 25% 75% 50% 86% 33% 67% (67%)

the ability of testing the essence of formal requirements in
Büchi automaton. It shall also be noted that the ASC criteria
do not subsume their counterparts in state and transition
coverage. For example, in the fuel system model, the test
suite for ASC/weak criterion only achieves 55% of coverage
over the branch coverage, lower than both SC/weak and
TC/weak. These criteria are complementary to each other,
and may be used in combination to achieve desired coverage
on requirements in Büchi automaton.

VII. CONCLUSIONS

We proposed a specification-based approach for testing
reactive systems with requirement expressed in Büchi au-
tomata. At the core of our approach are two variants of
accepting state combination coverage metrics measuring
how well a test suite covers the acceptance condition of
a Büchi automaton. By measuring the coverage of the
acceptance condition of a Büchi automaton encoding a
system requirement, these metrics and criteria enable testing
temporal patterns of infinite executions of a reactive system.
To facilitate the practical use of the proposed test criteria, we
developed test-case generation algorithms for these proposed
criteria. The algorithms utilize the counterexample genera-
tion capability of an off-the-shelf model checker to automate
the process of test-case generation for the proposed criteria.

It shall be noted that, although specification-based test-
ing with automata has been studied before (c.f.[22]), the
specification concerned in most of these previous works is a

system design modeled in a finite automaton. In comparison,
we focus on a behavioral requirement modeled in Büchi
automaton. Moreover, existing approaches for specification-
based testing for reactive systems focus on the finite prefixes
of its infinite executions. In contrast, our approach works
with temporal patterns of its infinite executions. All of these
make our approach more effective in testing the temporal
patterns of a reactive system.

Our approach tests the conformance of a reactive system
to its requirement in Büchi automaton. It may be used
for revealing the deficiency of the system as well as its
requirement. We discussed how our approach may be used to
debug and even refine the requirement, using the information
from the model-checking-assisted test case generation. We
proposed a property-refinement algorithm that automated the
process of property refinement.

To assess the effectiveness of our approach, we carried
out an extended computational study using cross-coverage
measurement as a tool. We measure how well a test suite
produced under one test criterion covers another test cri-
terion. We also select subjects from a diversified range
of applications. The experimental results indicate that our
criteria exhibit competent performance over existing test
criteria. They are particularly effective at reducing the size
of test suites, making testing more targeted and efficient. For
the future work, we want to extend our approach to more
complex requirements, such as those in µ-calculus.

REFERENCES

[1] O.-J. Dahl, E. W. Dijkstra, and C. Hoare, Structured Program-
ming, ser. A.P.I.C. Studies in Data Processing. Academic
Press, 1972, vol. 8.

[2] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A tempo-
ral logic based theory of test coverage and generation,” in
TACAS’02, 2002.

[3] J. Tretmans, “Model based testing with labelled transition
systems,” in Formal methods and testing. Springer, 2008,
pp. 1–38.

[4] K. Meinke and M. A. Sindhu, “Incremental learning-based
testing for reactive systems,” in Tests and Proofs. Springer,
2011, pp. 134–151.

[5] L. Tan, “State Coverage Metrics for Specification-Based Test-
ing with Büchi Automata,” in 5th International Conference
on Tests and Proofs, ser. Lecture Notes in Computer Science.
Zurich, Switzerland: Springer Verlag, 2011.

[6] L. Tan and B. Zeng, “Specification-Based Testing with Buchi
Automata: Transition Coverage Criteria and Property Refine-
ment,” in International Conference on Information Reuse and
Integration. IEEE, August 2014.

[7] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland,
J. Derrick, J. Dick, M. Gheorghe, M. Harman, K. Kapoor,
P. Krause, G. Lüttgen, A. J. H. Simons, S. Vilkomir, M. R.
Woodward, and H. Zedan, “Using formal specifications to
support testing,” ACM Comput. Surv., vol. 41, no. 2, pp.
9:1–9:76, Feb. 2009. [Online]. Available: http://doi.acm.org/
10.1145/1459352.1459354

[8] M.-C. Gaudel, “Software testing based on formal specifica-
tion,” in Testing Techniques in Software Engineering, Second
Pernambuco Summer School on Software Engineering, PSSE
2007, December 3-7, 2007, Revised Lectures, ser. Lecture
Notes in Computer Science, P. Borba, A. Cavalcanti, A. Sam-
paio, and J. Woodcock, Eds., vol. 6153. Springer, 2010, pp.
215–242.

[9] ——, “Checking models, proving programs, and testing
systems,” in TAP 2011 proceedings, ser. Lecture Notes in
Computer Science, M. Gogolla and B. Wolff, Eds., vol. 6706.
Springer, 2011, pp. 1–13.

[10] G. Fraser and A. Gargantini, “An evaluation of model check-
ers for specification based test case generation,” in ICST
’09: Proceedings of the 2009 International Conference on
Software Testing Verification and Validation. Washington,
DC, USA: IEEE Computer Society, 2009.

[11] L. Tan, O. Sokolsky, and I. Lee, “Specification-based Testing
with Linear Temporal Logic,” in the proceedings of IEEE
Internation Conference on Information Reuse and Integration
(IRI’04). IEEE society, 2004.

[12] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple
on-the-fly automatic verification of linear temporal logic,” in
Protocol Specification Testing and Verification. Chapman &
Hall, 1995.

[13] B. Zeng and L. Tan, “Test reactive systems with
Büchi automata: acceptance condition coverage critera
and performance evaluation,” 2015, (The full version
with proofs). [Online]. Available: http://www.tricity.wsu.edu/
∼litan/papers/acccovfull.pdf

[14] M. Kamel and S. Leue, “Formalization and validation of the
General Inter-ORB Protocol (GIOP) using PROMELA and
SPIN,” International Journal on Software Tools for Technol-
ogy Transfer (STTT), vol. 2, no. 4, Mar. 2000.

[15] S. Joseph, “Fault-Injection through Model Checking via
Naive Assumptions about State Machine Synchrony Seman-
tics,” Master’s thesis, West Virginia University, Morgantown,
West Virginia, 1998.

[16] SIMULINK, “Dynamic system simulation for matlab, the
mathworks,” January 1997.

[17] P. C. Jorgensen, Software Testing: A Craftsman’s Approach,
1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1995.

[18] B. Zeng and L. Tan, “Test Criteria for Model-Checking-
Assisted Test Case Generation: A Computational Study,” in
International Conference on Information Reuse and Integra-
tion. IEEE, 2012.

[19] Y.-k. Tsay, Y.-f. Chen, M.-h. Tsai, K.-n. Wu, and W.-c.
Chan, “GOAL : A Graphical Tool for Manipulating B uchi
Automata and Temporal Formulae,” in 13th Tools and Algo-
rithms for the Construction and Analysis of Systems, vol. 02.
Springer, 2007, pp. 466–471.

[20] G. J. Holzmann, “The model checker SPIN,” IEEE Transac-
tions on Software Engineering, vol. 23, May 1997.

[21] B. Zeng and L. Tan, “A unified framework for evaluating test
criteria in model-checking-assisted test case generation,”
Information Systems Frontiers, April 2013. [Online].
Available: http://dx.doi.org/10.1007/s10796-013-9424-y

[22] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,”
IEEE Trans. Softw. Eng., vol. 17, no. 6, Jun. 1991.

http://doi.acm.org/10.1145/1459352.1459354
http://doi.acm.org/10.1145/1459352.1459354
http://www.tricity.wsu.edu/~litan/papers/acccovfull.pdf
http://www.tricity.wsu.edu/~litan/papers/acccovfull.pdf
http://dx.doi.org/10.1007/s10796-013-9424-y

	Introduction
	Preliminaries
	Kripke Structures, Traces, and Tests
	Generalized Büchi Automata

	Accepting State Combination Coverage Criteria
	Model-Checking-Assisted Test Generation for Accepting States Combination Coverage
	ASC-Induced Property Refinement
	Experiments
	Conclusions
	References

