
An Agent-Based Formal Framework for
Modeling and Simulating Supply Chains

Li Tan1, Shenghan Xu2, Benjamin Meyer1, and Brock Erwin1

1 School of Electrical Engineering and Computer Science
Washington State University, Richland, WA 99354

2 College of Business and Economics
University of Idaho, Moscow, ID 83843

Abstract

We propose an open and extensible agent-based for-
mal framework for modeling and simulating supply chains.
Since structures and behaviors of supply chains can be very
different based on underlying business models and markets,
most of existing simulation and modeling tools are only ap-
plicable to specific subsets of supply chains. To improve
extensibility, a distinctive feature of our approach is that
it separates the functionalities of an element from its role
and handles interactions among elements in an agent-based
framework: elements are modeled as agents and their inter-
actions decide the behavior of a supply chain. Our frame-
work provides formal definitions for the syntax and seman-
tics of an element. The framework separates internal behav-
iors of an element from its interface. These features make it
easier to define new types of elements and customize their
behaviors for a variety of supply-chain applications. The
framework also gives rigid simulation-based semantics for
a supply-chain model. The formalism it introduced helps an
analyst understand and validate simulation results precisely
and rigorously. The formal framework also facilitates auto-
mated formal analysis of a supply chain [7]. We discuss the
implementation of our framework in context of SIMRISK, a
supply chain simulation and analysis tool we developed.

1 Introduction

Supply chains concern the movement of merchandise
from suppliers to customers’ hands. A streamlined supply
chain is a vital asset for many companies that compete in
today’s global market. To reduce cost and maintain profit
margin, many companies engage themselves in the global
supply chain expansion involving suppliers, distributors, re-
tailers, and logistics providers across multiple continents
[3]. For example, Costco operates its 544 warehouse stores
in North America, South America, Asia, and Europe. It

sources merchandise from all over the world [2]. With the
world facing recession and businesses facing stiffer compe-
titions, streamlining supply chains is increasingly important
to a company’s bottom line. Understanding the behavior of
a supply chain is an important step in supply chain manage-
ment and a precondition to supply-chain optimization.

Simulation remains an important tool for understanding
the behavior of a supply chain. Compared with other meth-
ods such as stochastic analysis, simulation does not heavily
tax one’s theoretical background and analysis skills. Simu-
lation results can be visualized and explained to executives
and other stakeholders with limited or no background on
supply-chain management. With the introduction of more
powerful hardware, especially emerging multi-core archi-
tecture, there is renewed interest in recent years in desktop-
based simulation tools for supply chains [8].

One of our motivations is to provide an agent-based ap-
proach for analyzing complex supply chain systems. With
a growing number of businesses considering oversea sup-
pliers as a way to cut cost, a global supply chain operation
often consists of large numbers of facility nodes including
suppliers, warehouses, and retailers, each of which can be
seen as an (semi-)autonomous decision maker. Agent-based
modeling has been successfully used to study a wide range
of complex systems [1]. These systems typically consist of
groups of autonomous agents. We adopt an agent-based ap-
proach because the challenge of simulating complex sup-
ply chains is the exact problem agent-based approach is
prescribed for: although the behavior of each facility node
may be simple to understand, the overall behavior of a sup-
ply chain as the result of interactions among these nodes is
not. Our framework models elements in a supply chain as
agents, which include facility nodes (e.g. warehouses) and
other elements (e.g. routes). In our framework, an analyst
defines the internal behavior of an element as well as its in-
teractions with other elements via interfaces and messages.
The simulation engine simulates the behavior of a supply
chain by computing interactions among elements.

1



One goal of this research is to provide an open and ex-
tensible framework for supply-chain modeling and simula-
tion. The structure and behavior of a supply chain are heav-
ily influenced by the underlying business model and mar-
ket. For example, Walmart’s supply chain operation fol-
lows a more traditional setting. It contains multiple eche-
lons of suppliers, distribution centers, and stores, whereas
Dell uses a direct marketing approach that eliminates inter-
mediate layers. These two supply chains not only differ in
structure, but also in functionality and strategy at the ele-
ment level. For instance, in Dell’s “build-to-order” model,
supplier sites also include manufacturing capabilities that
can assemble custom-built computers, whereas for most re-
tail chains, suppliers are simply warehouses of merchandise
providers. Because of differences and complexity in supply
chain operations, most supply-chain tools choose to target
only a specific set of supply chains with limited extensibil-
ity. In contrast, our agent-based formal framework provides
an analyst a higher degree of flexibility: he can add new el-
ements by instantiating an existing element type, redefining
an existing type, or even introducing a new type of element.
From supply-chain elements, we abstract both their struc-
tural components such as ports, and their behavior factors
such as internal merchandise transformation. To define a
new type of element, an analyst just needs to supply the
configuration of these components and factors.

Our agent-based formal framework gives formal defini-
tions for the syntax and semantics of an element. It also de-
fines formal simulation-based semantics for a supply chain.
One problem with many existing supply-chain simulation
tools is that they lack a formal definition of a supply-chain
model. This makes it harder to validate a simulation result
since the expected behavior of a supply-chain model is not
rigidly defined. For the same reason, it is hard to tell bugs
from legitimate features in tool implementations. The for-
malism we introduced has several benefits: it helps validate
simulation results and also reduces errors in tool implemen-
tations; the formalism also facilitates formal analysis of a
supply chain. For example, our formal framework supports
a model-checking-based risk analysis approach in [7].

The rest of the paper is organized as follows: in Section
2 we discuss related works; in Section 3 we introduce our
agent-based modeling framework. We formally define the
interface of an element (Section 3.1), its internal and exter-
nal behaviors (Section 3.2), and constraints (Section 3.3).
In Section 4 we introduce our simulation algorithm and de-
fine a simulation-based formal semantics for a supply chain
model. Section 5 discusses SIMRISK, a supply-chain mod-
eling, simulation, and analysis tool that implements the pro-
posed framework. Finally, Section 6 concludes the paper
and discusses future research.

2 Related Works

Supply-chain modeling and simulation have attracted
much research interest recently. In [4] Liu et al introduced a

Java-based supply-chain simulation tool Easy-SC. In Easy-
SC modeling environment, facilities were modeled as in-
stances of pre-defined six enterprise nodes, and routes were
implemented as connection arcs. in [8] Wang et al discussed
a general business simulation environment (GBSE) devel-
oped by IBM China research lab. GBSE was a Java-based
event-driven simulation tool built on top of the Eclipse plat-
form. GBSE defined three types of facility nodes and one
type of link. In contrast to these tools, our approach pro-
vides a higher degree of extensibility by allowing an analyst
to define his own type of supply-chain element.

Agent-based approaches have been explored by other re-
searchers for simulating supply chains. Swaminathan et al
[6] proposed a multi-agent approach for modeling supply
chains. They believed a multi-agent approach is “a natural
choice” for modeling supply chains because “supply-chain
management is fundamentally concerned with coherence
among multiple decision makers”. They modeled structural
elements as agents, which interacted with each others us-
ing control elements. Our agent-based research follows the
same line but one of our improvements is to formally define
the syntax and semantics of an agent.

On the implementation side, Rossetti et al [5] used a
objective-oriented framework to implement a Java package
for supply-chain simulation. We also use an object-oriented
type system in SIMRISK, but do so within our agent-based
formal framework.

3 Agent Modeling

Agent-based modeling studies interactions among au-
tonomous agents. Supply chains fit nicely into the profile
of agent-based modeling: a supply chain usually has a large
collection of facility nodes connected by routes. For exam-
ple, a regional supply chain can have hundreds of retailers
serviced by dozens of warehouses. Interactions among fa-
cility nodes make it very challenging to understand and pre-
dict risks embedded in supply chains. Our modeling tech-
nique is built based on agent-based modeling with special
attention for extensibility.

In our framework, elements in a supply chain are mod-
eled as agents. These elements include facility nodes and
routes connecting them. Agent modeling includes physical
modeling and behavior modeling. Our goal for agent mod-
eling is to define a general and extensible model that can
(1) model a variety of elements in a supply chain including
facility nodes and routes and (2) provide a rigid syntax and
semantics definition for an element. Definition 1 gives the
formal definition of an element. Next, we model the inter-
face of an element using ports (Definition 2), then proceed
with behavior modeling including merchandise transforma-
tion (Definition 2), message sending (Definition 7), delivery
decision (Definition 8). Finally we discuss constraints (Def-
inition 9) imposed on an agent.

2



Definition 1 (Element) An element of a supply chain is de-
fined as a tuple 〈P,U, ft, fm, fd, C〉, where P is a set of
ports, U is a set of modes, ft is a merchandise transfor-
mation function, fm is a message sending function, fd is a
delivery decision function, and C is a set of constraints.

3.1 Ports and Deliveries

The interface of an agent is defined by ports. Depending
on the direction of its merchandise flow, a port is either an
in-port or an out-port. A duplex port may be defined as a
combination of an in-port and an out-port. Each port may
buffer flow up to a given inventory size.

An element may consist of both in- and out-ports. These
ports are the interface of the element via which the element
receives and/or delivers merchandise. Definition 2 gives the
formal definition of ports. We will use the following nota-
tions in the rest of this paper: we denote a.pi for port pi of
element a, and a.pi.inv for inventory at port pi. We denote
a.P+ and a.P− for all a’s in-ports and out-ports, respec-
tively. We also denote Z for the set of all integers, andR for
the set of real numbers. Z+ and R+ represent non-negative
numbers of these sets, respectively.

Definition 2 (Ports) A port may contain its own buffer. It
is either an in- or out- port. Formally, the state of a port is
defined as a tuple p = 〈inv, dir〉, where inv ∈ Z∗ is the
amount of merchandise stacked at p and dir ∈ {+,−} is
the direction of the port. p is an input port if p.dir = +, or
an output port if otherwise.

Definition 3 (Deliveries) Let p− be an out-port of an
element that is connected to input ports p+

1 , · · · p
+
l of

some elements, a delivery from p− is a vector δ̂p− =
〈δp−p+

1
, · · · , δp−p+

l
〉, where δj ∈ Z∗ is the amount of mer-

chandise delivered to p+
j from p−.

By Definition 3, a delivery at an out port p− is charac-
terized by amounts of merchandise delivered to receiving
in-ports. The total delivery received by an element a in a
supply chain S is defined as,∑

p−∈S.P−

∑
p+∈a.P+

δp−p+

The total delivery received by a is defined as,∑
p+∈S.P+

∑
p−∈a.P−

δp−p+

3.2 Modeling Agent Behaviors

Definition 4 (Modes and States) A state of an agent a is
defined as a tuple 〈p1.inv, · · · , pl.inv, u〉 ∈ (Z∗)l × U ,
where pi.inv is the inventory of i-th port of a and U is the
set of a’s modes.

An element has a finite set of modes, which are used to
model states of its internal processes. A state of the element
is defined by its mode and inventory at its ports. We use the
following notations in the rest of the paper: given a state s =
〈p1.inv, · · · , pi.inv, · · · , pl.inv, u〉, s[pi.inv ← pi.inv

′] is
a new state s′ in which pi’s inventory is changed from
pi.inv to pi.inv

′, i.e., s′ = 〈p1.inv, · · · , pi.inv
′, · · · , u〉.

Similarly, s[u ← u′] is a new state obtained by replacing
mode u in s by u′.

In our agent-based framework, the behavior of an ele-
ments is defined by its internal merchandise transformation,
message sending and processing, and delivery decisions.

Internal Merchandise Transformation Internal merchan-
dise transformation depicts activities that produce and/or
transport merchandise inside an element. For example, in
case of a route, merchandise is moved from its receiving
in-port to its out-port. In case of a manufacturing site, raw
materials received at in-ports are transformed into finished
products at out-ports.

Definition 5 (Merchandise Transformation Functions)
A merchandise transformation function of an agent a has
form of ft : S → S, where S is the set of all the states of
a. In addition,f(〈a.p1.inv, a.p2.inv, · · · , a.pl.inv, u〉) =
〈a.p1.inv

′, a.p2.inv
′, · · · , a.pl.inv

′, u′〉 satisfies the
following constraints,

1. a.pk.inv′ − a.pk.inv ≤ 0 if pk is an out-port.

2. a.pk.inv′ − a.pk.inv ≥ 0 if pk is an in-port.

Definition 5 is general enough to describe a variety of
internal merchandise transformation activities. For a manu-
facturing site a, a.pk.inv′−a.pk.inv represents the amount
of raw material consumed if a.pk is an in-port, and the
amount of finished products produced if a.pk is an out-port.
It should be noted that a merchandise transformation func-
tion does not specify types of raw materials and finished
products. Raw materials and finished products can be dif-
ferent types of merchandise, and in reality, they often are.

For a route, a.pk.inv′ − a.pk.inv represents the amount
of merchandise being transported. The transportation of
merchandise does not have to be instantaneous. Transporta-
tion delay can be modeled in modes as well. This can be
done by, for example, further decomposing modes and in-
troducing finite queues. In such a case, the amount con-
sumed at an in-port is not instantly transferred to out-ports;
instead, it is pushed to a finite queue, and the amount trans-
ferred to out-ports is dequeue from the same queue. Since
the size of an internal queue and its content are finite, the
status of the queue can be encoded as a part of the modes.

Message Sending and Processing In our agent-based
framework, elements are communicated through messages.
Each message contains a receiving element and an action.
An action is defined as a mode transition function of the re-
ceiving element. A receiving element processes a received
message and changes the element’s mode as the result.

3



Definition 6 (Actions and Messages) An action α of an
agent a is defined as a function α : U → U , where U is the
set of a’s modes. A message for agent a is a tuple 〈a, α〉,
where α is an action of a.

Definition 7 (Message Sending Function) Let S be a sup-
ply chain, a message sending function of an agent a in S is
a function fm : S → 2M , where S is the mode of a, and M
is the set of messages generated in S.

Message sending function in Definition 7 describes how
messages are generated by elements. Based on its mode,
an element may send a set of messages and enter the next
mode. Once generated, a message is routed to its destina-
tion. The set of messages sent by an element may also be
empty, meaning that it does not send out any message at the
current mode. Such a mode is called a silent mode.

Delivery Decision Delivery decisions made by an agent
are defined by a delivery decision function. A delivery
decision function decides how much merchandise an
out-port shall deliver and how it shall be distributed
to in-ports that are connected to the out-port. A de-
livery decision function makes its decision based on
the current state. Definition 8 gives the formal defi-
nition of Delivery Decision Function. In other words,
a delivery decision function has form of fd(s) =
(〈δp−1 p+

11
, · · · , δp−1 p+

1q1
〉, · · · , 〈δp−mp+

m1
, · · · , δp−0 p+

mqm
〉,

where p+
i1, · · · , p

+
iqi

are in-ports connected to agent a’s
i-th out-port p−i , and 〈δp−i p+

i1
, · · · , δp−0 p+

iqi

〉 is an outgoing

delivery at p−i .

Definition 8 (Delivery Decision Function) Let S be a
supply chain and a be an element of S with m out-ports.
A delivery decision function of agent a is a function fd :
S → (δ̂p−1 × · · · × δ̂p−m), where S is the set of states of a,

and δ̂p−i is an outgoing delivery at out-port p−i .

3.3 Constraints

In our framework, an element may be imposed with a set
of constraints. Constraints can be used to model physical
or logical limitations imposed on an agent. For example,
constraint can be used to model a facility a with limited
inventory space V , in which case a constraint for a can be
defined as

∑
p∈a.P+∪a.P− p.inv ≤ V , where a.P+∪a.P−

is the set of all the a’s ports.

Definition 9 (Constraints) Let S be a supply chain. A con-
straint for element a is a predicate c over states of a, that is,
c : S → {true, false}, where S is the set of a’s states. An
execution ρ of S is invalid if an agent a can reach a state s
such that c(s) is false, where c is one of a’s constraints.

3.4 Special Cases

Our agent-based framework is general enough to define
the structures and behaviors of a variety of supply-chain el-
ements. On the top level, there are two categories of ele-
ments: facility nodes and routes. a route is a special kind of
element that has precisely one in-port and one out-port. Its
merchandise transformation function simply models trans-
fer of merchandise from the in-port to the out-port with
transportation delay.

Depending on the type of a supply chain, facility nodes
can be further classified to several categories. For exam-
ple, a retailer r has only in-ports. Its internal merchandise
function models the consumption of merchandise at its de-
mand rate. A warehouse w has both in- and out- ports. Its
merchandise transformation function and delivery function
shall satisfy the flow balance equation, that is, its inventory
before an update plus incoming deliveries shall be the same
as its inventory after the update minus outgoing deliveries.

An advantage of our framework is that an analyst can
define his own type of elements for targeted supply chain
operations. For example, in a traditional retail setting, a
supplier has only out-ports, but for companies like Dell, a
supplier’s site also has manufacturing capability. In such a
case, a supplier node has both in- and out-ports. Its mer-
chandise function models how raw materials are consumed
at in-ports and finish products are produced at out-ports.

4 Supply-chain Semantics and Simulation

We introduce semantics of a supply chain using its sim-
ulation semantics. That is, the semantics of a supply-chain
model in our framework are defined by its simulation traces.
Algorithm 1 defines our simulation algorithm.

Semantically a supply-chain model is a synchronous sys-
tem extended with messages. Each iteration in Algorithm 1
simulates a clock update. A clock update is a basic time
unit in supply-chain planning. Depending on planning hori-
zon of underlying supply-chain operations, an update may
represent a hour, a day, or a month etc. Each iteration starts
with an internal merchandise transformation: lines 2-5 call
the merchandise transformation function of each agent. As
a result, an element enters its next state and sends out mes-
sages as defined in its message sending function. In general,
whenever an element changes its state, its message sending
function is called to check if the element needs to inform
others of its change of state.

Algorithm 2 processes messages generated by elements.
During each iteration it takes a message 〈b, β〉 from a mes-
sage pool M and applies action β on receiver b. β may
change the mode of b. b may generate messages at the new
mode, or b’s new mode can be a silent mode with no mes-
sage being sent. Algorithm 2 uses a run-to-completion se-
mantics, that is, it exits only after the message pool is empty.

Next, Algorithm 1 calls every element’s delivery deci-
sion function to compute deliveries. To realize a delivery,

4



it subtracts inventory at an out-port and adds it to the con-
nected in-ports. A delivery may also change the states of
sending and receiving elements, which causes these agents
to send out messages. Algorithm 2 is called afterward to
process these messages.

Algorithm 1 simulate(S)
Require: a supply chain S with a set of agents A, where

each agent a ∈ A has a start state sa
0 .

1: while true do
2: for all a ∈ A do
3: sa = ft(sa);
4: M = M ∪ fa

m(sa)
5: end for
6: processMsg()
7: for all a ∈ A do
8: // Assume a has k out-ports p−1 · · · p

−
k

9: (δ̂p−1 , · · · , δ̂p−k ) = fd(sa);
10: for all p− ∈ {p−1 , · · · , p

−
k } do

11: // p− is connected to p+
1 · · · p+

q

12: let 〈δp−p+
1
, · · · , δp−p+

q
〉 = δ̂p−

13: for all p+ ∈ {p+
1 , · · · , p+

q } do
14: // p+ belongs to agent d.
15: sd = sd[d.p+.inv ← (d.p+.inv + δp−p+)]
16: M = M ∪ fd

m(sd)
17: end for
18: sa = sa[a.p−.inv ← (a.p−.inv − δp−p+

1
· · · −

δp−p+
q
)]

19: M = M ∪ fa
m(sa)

20: end for
21: end for
22: processMsg()
23: end while

Algorithm 2 processMsg()
1: while M 6= ∅ do
2: M = M − {m} // Take a message m from M
3: let 〈b, β〉 = m
4: let 〈b.p1.inv, · · · , b.pn.inv, u

b〉 = sb

5: sb = 〈b.p1.inv, · · · , b.pn.inv, β(ub)〉
6: M = M ∪ f b

m(sb)
7: end while

5 Implementation

We implement an initial prototype of the proposed agent-
based formal framework in SIMRISK. SIMRISK is an inte-
grated tool for supply chain modeling, simulation, and risk
analysis. It implements a visual integrated development
environment (IDE). Its IDE provides three different views
of a supply chain: a hierarchical presentation of elements

Figure 1. The Integrated Development Envi-
ronment (IDE) of SIMRISK.

in the supply chain (tree view), a geographic view of ele-
ments (network view), and a property page for displaying
attributes of a selected element (property view). SIMRISK
IDE can visualize the on-the-fly status of a simulation, for
example, it shows the animation of shipments during a sim-
ulation. Besides a normal simulation mode in which a user
can start, pause, and stop a simulation, SIMRISK also pro-
vides a batch mode for numeral experiments. During the
batch mode, all the non-essential status displays are dis-
abled to reduce computational overhead. In the spirit of
extensibility, the design of SIMRISK’s graphic user inter-
face also supports user-defined element types: SIMRISK
provides a graphic handler to the user-defined type package,
and the package can use the handler to display attributes of
an element of user-defined type. Figure 1 shows a snapshot
of SIMRISK’s visual IDE. SIMRISK is written in Java.

Figure 2 shows the architecture design of SIMRISK, pre-
sented as a UML component diagram. To achieve a higher
extensibility, a key feature of SIMRISK is to separate the
operational semantics of a supply chain from its topology.
The requirement for defining the operational semantics of
a supply chain is designated by an interface for strategy.
A user can propose his own types of elements, as long as
he supplies the necessary details as required by the strategy
interface. The topology package stores the physical struc-
ture of a supply chain. They define, for example, the lo-
cations of nodes and how they are connected by routes. In
other words, the topology package defines geographic loca-
tions of elements and the user-defined type package speci-
fies their semantics as defined in Section 3. To test differ-
ent supply chain policies on the same network structure, an
analyst can switch between different strategies on-the-fly.
SIMRISK implements an event-driven simulation engine as
outlined in Algorithm 1.

5



Figure 2. The architecture design of SIMRISK.

6 Conclusion and Future Works

We propose a novel agent-based formal framework for
modeling and simulating supply chains. Our framework
makes the following contributions to supply-chain model-
ing and analysis: first, our agent-based approach facilitates
the study of complex system dynamics arising from inter-
actions among different elements in a supply chain. Our
event-driven simulation algorithm simulates system behav-
ior by computing interactions among elements. Second,
our framework is open and extensible. An analyst can cus-
tomize it for targeted supply chain applications by intro-
ducing new types of element or redefining existing ones.
Finally, we provide a formal definition for syntax and se-
mantics of an element, and we introduce a simulation-based
semantics for a supply chain model. The formalism we in-
troduce helps precisely interpret simulation results and val-
idate the tool’s implementation. The formalism also facili-
tates automated formal analysis such as a model-checking-
based risk analysis technique we introduced in [7].

There are several directions to extend this research. For
instance, multi-core hardware could be an excellent plat-
form for our agent-based framework, with elements running
on different cores and communications expedited by shared
memory and cache. we want to optimize our simulation
algorithm and its implementation on multi-core hardware.
Another possibility is to provide a tighter integration be-
tween simulation-based approach and formal analysis ap-
proach. Currently SIMRISK can translate a supply-chain
model to an extended Markov decision process for formal
analysis. In the future, we want to extend it to support user-

defined element types. We also plan to implement more
features of SIMRISK as described in this paper.

References

[1] R. Axelrod. The Complexity of Cooperation:Agent-Based
Models of Competition and Collaboration. Princeton Uni-
versity Press, 1997.

[2] Costco Wholesale Corporation. Costco wholesale annual re-
port 2007. Year ended Sept 2, 2007.

[3] J. Ferrer and J. Karlberg. Achieving high performance
through effective global operations. Technical report, Accen-
ture, 2006.

[4] J. Liu, W. Wang, Y. Chai, and Y. Liu. Easy-SC: a supply chain
simulation tool. In Proceedings of the 2004 Winter Simulation
Conference, volume 2, pages 1373–1378, Dec. 2004.

[5] M. D. Rossetti, M. Miman, V. Varghese, and Y. Xiang. An
object-oriented framework for simulating multi-echelon in-
ventory systems. In Proceedings of the 38th conference on
Winter simulation, pages 1452–1461, 2006.

[6] J. Swaminathan, S. Smith, and N. Sadeh. Modeling supply
chain dynamics: A multiagent approach. Decision Sciences,
29(3):607–632, Summer 1998.

[7] L. Tan and S. Xu. Model check stochastic supply chains.
In Proceedings of the IEEE 2008 international conference
on Information Reuse and Integration, pages 416–421. IEEE,
2008.

[8] W. Wang, J. Dong, H. Ding, C. Ren, M. Qiu, Y. Lee, and
F. Cheng. An introduction to ibm general business simulation
environment. In Proceedings of the 2008 Winter Simulation
Conference, pages 2700–2707, Dec. 2008.

6


