
An Extensible and Integrated Software Architecture for Data Analysis and
Visualization in Precision Agriculture∗

Li Tan1,2† Ronald Haley1 Riley Wortman1 Qin Zhang2

1 School of Electrical Engineering 2 Center for Precision
and Computer Science and Automated Agricultural Systems

Washington State University Washington State University
Richland, WA 99352 Prosser, WA 99350

Abstract

Recent technology advances in information technology
and other engineering fields provide new opportunities for
research and practices in precision agriculture. Using these
technologies, field operators can collect voluminous data
from a heterogeneous network of devices that provides real-
time and multiple-factor measurement of field conditions
with much finer granularity. A major challenge in preci-
sion agriculture today is how to analyze these data effi-
ciently and use them effectively to improve farming deci-
sions. We propose an extensible and integrated software
architecture for data analysis and visualization in precision
agriculture, with three distinctive features: (a) a meta-data-
model-based data importation component capable of im-
porting data in various formats from a variety of devices
in different settings; (b) a data-flow-driven data process-
ing subsystem in which a user can define his/her own data
processing workflows and add custom-defined data process-
ing operators for a specific application; (c) an overall ar-
chitecture design following a client-server model that sup-
ports a variety of client devices, including mobile devices
such as the Apple iPad. We implemented the software ar-
chitecture in an open-source decision support tool for pre-
cision agriculture. The tool has been successfully used in
a USDA-sponsored project on canopy management for spe-
cialty crops.

1 Introduction

With a growing population on the planet and increased
living standards worldwide, the demand for agriculture
∗This research was supported in part by the U.S. department of Agri-

culture grant 20101304802. Any opinions, findings, conclusions, or rec-
ommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the view of the U.S. Department of Agriculture.
†Corresponding author. Email: litan@wsu.edu.

products rises quickly. Researchers and farmers around the
globe are exploring and applying new technologies to agri-
cultural operations, and an important advance in agricul-
tural technologies is the emergence of precision agriculture
[1,2]. Using advanced technologies in information technol-
ogy and other engineering fields, precision agriculture mea-
sures and analyzes the conditions of a field and its environ-
ment, and uses this information to optimize field operations.
Precision agriculture is a data-intensive operation: in a typ-
ical setting of precision agriculture, field operators collect a
large amount of data from a heterogeneous network of de-
vices, for instance, infrared sensor arrays, Light Detection
and Ranging (LIDAR) devices, soil moisture sensors etc.
The success of a precision agricultural operation largely de-
pends on its ability to analyze these data efficiently and ap-
ply the results effectively to decision processes.

By its operational characteristics, precision agriculture
presents unique challenges as well as research opportunities
for Computer Scientists, especially in the areas of data anal-
ysis, visualization, and decision support [10]. For instance,
to process data in different formats from an array of devices,
field operators need an analysis tool that can import and in-
tegrate heterogeneous data sets [7,8]. In addition, precision
agriculture operations vary widely, depending on products,
fields, and many other factors. Operators need an analysis
tool that enables them to define their own workflow of data
processes. Last but not least, due to the increasing scale of
agriculture operations, the tool has to be scalable and ca-
pable of supporting a variety of devices, including mobile
devices, for on-the-fly access and in-field decision making.

To address these needs, we need a software solution with
an architecture design that is extensible, scalable, and yet
flexible to accommodate a variety of agricultural operations
and client devices. To meet these requirements, we propose
an software architecture with the following features:

1. A data importation and integration component that is
capable of processing input data sets in different for-

1



mats and from multiple sources. The component uses
a meta-data-model in XML schema to specific accept-
able formats and semantics of data sets. A user can de-
fine his/her own data model in XML for input data sets.
The meta-data-model-based approach enables the data
importation and integration module to process a data
set with a custom-defined data model, as long as the
data model conforms to the meta-data-model defined
by the component.

2. An extensible data-flow-driven data analysis subsys-
tem. A user may define his/her own workflow of data
processing for a specific farming operation. The work-
flow is defined as a data-flow model using built-in or
custom-defined data processing operators. The user
can implement a specific data processing algorithm as
a custom-defined operator.

3. The overall architecture design follows a client-server
model that supports a variety of client devices, includ-
ing mobile devices such as Apple iPad. The architec-
ture design follows the design principle of “separation
of concerns”: data intensive tasks are processed by
servers, and visualization and human-computer inter-
action are handled by client devices. This design fea-
ture improves the scalability and extensibility of our
software architecture, as data intensive tasks can be
distributed among a network of servers, which may
eventually migrate to a cloud-based computing plat-
form (cf. [11]). A clearly defined server interface
based on socket communication enables the architec-
ture to support an array of Internet-connected devices,
including mobile clients.

We implemented a prototype of the software architecture
in an open-source data analysis and decision support tool.
The tool has been successfully used in a precision agricul-
ture project sponsored by the US department of Agriculture
(USDA) under its specialty crop initiative. The project is to
develop technology capability for managing canopy struc-
tures for specialty crops (fruits and nuts). Our tool has been
used for importing, integrating, analyzing, and visualizing
data in different formats and from different sources, and as-
sisting decision processes.

The rest of the paper is organized as follows: Section
2 discusses data importation and integration; Section 3 de-
scribes the data-flow-driven data processing subsystem. It
also describes data visualization operators used by the sub-
system; Section 4 discusses the overall client-server archi-
tecture design; Section 5 discusses an implementation of
the software architecture; and finally Section 6 concludes
the paper with a discussion on future research directions.

2 Data Importation and Integration

Precision agriculture collects data from a heterogenous
network of devices. The formats and semantics of these data
are defined by a range of factors, including sensor types,
configurations of data loggers etc. A challenge in preci-
sion agriculture is how to import and integrate heterogenous
data so that the rest of data processing components may use
them.

For example, we implemented the proposed software ar-
chitecture as an open-source tool and use it in a USDA-
sponsored precision agriculture project. The tool needs to
process a variety of data collected from different sources,
including PAR data collected from an infrared sensor array
and GPS position of the array. The sensor array is mounted
on a motorized platform Mule. Depending on the physical
configuration of Mule and the setting of a data logger, the
format of the data and its setting constantly change. We will
use this as an example to show how our solution can sup-
port the importation and integration of data with changing
formats and settings.

Our software architecture provides a two-fold approach
for importing and integrating heterogenous data sets:

1. The software architecture separates the concern of data
importation and integration from the rest of data pro-
cessing. The data importation component is essentially
a collection of data importation operators. The variants
of data formats and semantics accepted by an operator
is defined by a meta-data-model in XML schema.

2. Each data set comes with a custom-defined data model
in XML. The data model defines the format and the se-
mantics of the data set. If the data model conforms to
a meta-data-model defined by a data importation op-
erator, the data set can be imported by the operator,
which will integrate the data set to an uniformed in-
ternal representation accessible to the rest of data pro-
cessing components.

For instance, our implementation of the proposed soft-
ware incorporates a data importation operator. The format
and semantics of the data sets acceptable to the operator is
defined by a meta-data-model. Figure 1 shows an overview
structure of the meta-data-model in XML schema. For clar-
ity and brevity, Figure 1 only displays elements that are rel-
evant to the discussion in this section.

The data importation operator reads in data sets collected
by mobilized sensor arrays, and converts them to an uniform
internal presentation for the rest of the data processing. An
input data set is a collection of files with comma-separated
values, recorded by a data logger. Each input data set is ac-
companied by a data model in XML that defines a data file’s
format, for example, names and column positions, as well

2



uid

time

sensor

1..∞

sensor_array

movement

coordinate_single

longtitude

latitude

coordinate_lon_lat

coordinate

other_data

datagroupDATAFILE

0..∞

DATA

Figure 1. A meta-data-model, defined in XML schema, for data importation and integration.

as semantics, for example, measurement units and sources.
In our software architecture, a data set must be accompanied
by a data model. In general, one can reuse a data model for
different data sets as long as the experimental setting (e.g.
data loggers, devices, etc) remains unchanged. The data
model of a data set must conform to the meta-data-model
of the data importation operator in order for the operator to
accept the data set.

Figure 2 shows a data model in XML that is used in our
case study. For brevity, Figure 2 shows the content of the
XML file relevant to our discussion. Figure 2 illustrates the
following characteristics of the data model:

1. The data model has a tree structure with the root DATA,
and the immediate child(ren) of the root define the
names of input data files. A data set is a collection
of these input data files.

2. Leaves of the tree structure are instances of (subclasses
of) the element type in the XML schema. There is
a one-to-one relation between these leaves and the
columns of data files in the data set. The in-order tra-
verse of leaves of a subtree with the root DATAFILE
lists the columns of that data file referred by the
DATAFILE node. For instance, the data model in Fig-
ure 2 indicates that a data set contains two data files
data par.csv and data gps.csv. The order of
columns in data par.csv is as follows: uid, a list

of sensors, date, and time. Internal nodes serve
as markers of logical groups. For instance, the logical
group date time comprises date and time.

3. Attributes of an element instance define the additional
semantics information of the instance. For example,
for each sensor, X and Y specify its X- and Y- offsets
to the center of the sensor array. Since the data set
already includes GPS measurement of the center of the
sensor array. The offsets may be used for computing
the location of an individual sensor sensor.

Note that in our case study every data file contains a col-
umn uid for unique identification numbers. uid serves as
a reference key to rows of data files. Rows in different data
files but sharing the same uid may be jointed to provide
multi-factor values for the same measurement point.

Once a data set is imported according to its format and
semantics defined by its accompanying data model, the im-
ported data is processed and integrated in an uniform in-
ternal representation. In our architecture, the internal rep-
resentation of data is a network of structured data objects.
The basic building block of this network are primitive data
objects. Each primitive data object represents a measure-
ment point, completed with the tempo-spatial information.
For example, in our case study, a primitive data object rep-
resents the data collected by a sensor at a specific time and
location. It consists of time, location, and sensor reading.

3



<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”ISO−8859−1” ?>
<DATA xmlns=” AgriD ”

x s i : s c h e m a L o c a t i o n =” AgriD f o r m a t . xsd ”>
<DATAFILE f i l e n a m e =” d a t a p a r . c sv ”>

<u i d />
<s e n s o r a r r a y>

<s e n s o r i d =” 1 ” X=”mm” Y=”mm” d e v i c e =”PAR” />
. . .

<s e n s o r i d =” 8 ” X=”mm” Y=”mm” d e v i c e =”PAR” />
< / s e n s o r a r r a y>
<t ime>

<d a t e t i m e>
< f u l l d a t e f o r m a t =”YYYY/MM/DD” />
< f u l l t i m e f o r m a t =”HH:MM:SS . SS” />

< / d a t e t i m e>
< / t ime>
<o t h e r d a t a />

< / DATAFILE>
<DATAFILE f i l e n a m e =” d a t a g p s . csv ”>

<u i d />
<movement>

. . .
< / movement>
<c o o r d i n a t e>

<c o o r d i n a t e l o n l a t>
< l o n g t i t u d e u n i t =” d e g r e e ” />
< l a t i t u d e u n i t =” d e g r e e ” />

< / c o o r d i n a t e l o n l a t>
< / c o o r d i n a t e>

< / DATAFILE>
< /DATA>

Figure 2. A data definition file in XML, con-
forming to the meta-data-model in Figure 1.

The meta-data-model-based data importation subsystem
is a important link in our software architecture. It takes het-
erogeneous data collected from different sensor sources and
in various format, and converts them to an uniform internal
representation of data so the rest of the tool can be built in-
dependently. The data modeling and integration capability
provided by the data importation subsystem enables us to
build a flexible and extensible analytical tool that can ac-
commodate a variety of data collecting platforms.

3 Data-Flow-Driven Design for Data Process-
ing and Visualization

The main purpose of our software architecture is to pro-
vide design guidelines for analytical tools that process and
visualize field-collected data. Our software architecture in-
corporates a data-flow-driven design for the core data pro-
cessing and visualization subsystem. The data-flow-driven
design consists of data-flow design models defining work-
flows of data processing, and a run-time environment inter-
preting and executing data-flow models. A data-flow de-

sign model provides a high-level abstract of data process-
ing. A user can easily change the workflow of data pro-
cessing for a specific field operation by reconfiguring the
design model. Furthermore, in our extensible data-flow-
driven design a user can define his/her own data processing
operators to data-flow design models. The data-flow-driven
design includes commonly-used functions as built-in data
operators, including operators for data importation and in-
tegration operators (Section 2), and visualization operators
(Section 3.2).

3.1 Data-Flow Design Models

A data-flow design model describes the process of how
data is imported, processed, and visualized. The data pro-
cessing and visualization subsystem includes a run-time en-
vironment for interpreting and executing data-flow design
models.

Building blocks of a data-flow design model are opera-
tors. An operators is a basic data processing unit that takes
input data from its interface, processes the data, and outputs
its result. The interface of an operator consists of input and
output ports. Each port is defined with its data type, which
is the type of data transmitted through the port. Operators
are linked by data links. A data link connects an output port
to an input port. A constraint is that the data types of two
linked input and output ports must match. By re-routing
data links, a user can re-configure a data-flow design model
for a different workflow with the same set of operators.

Figure 3 shows a data-flow design model used to define a
workflow of data processing in our case study. It starts with
custom-defined data importation operators Read WS.csv
and Read PAR.csv. Both operators support meta-data-
model-based data importation and integration described in
Section 2. Imported data are processed and finally visual-
ized using data visualization operators (Section 3.2).

3.2 Data Visualization

Due to the importance of data visualization in precision
agriculture, our data-flow-driven design includes built-in vi-
sualizations operators for addressing common needs for 2-
D and 3-D data visualization in precision agriculture.

2-D data visualization displays a two-dimension data set
on a Cartesian plane. The function of 2-D data visualiza-
tion is collectively implemented by a set of built-in oper-
ators including 2-D data visualization operator. The 2-D
visualization operator visualizes a two-dimension grid data
as a raster image in various formats. A user may define
color map used in visualization. In addition, since we adopt
an open software architecture design, operators are capa-
ble of communicating external applications. The 2-D visu-
alization operator can invoke the Google Earth application

4



Figure 3. A data-flow-driven design model for generating 2-D image overlaid on the Google Earth.

Figure 4. A 2-D visualization of Photosynthet-
ically Active Radiation (PAR) data overlaid on
the Google Earth [3].

and overlay 2-D data image on the related terrain. Figure 4
shows the Google Earth overlaid with a 2-D image of Pho-
tosynthetically Active Radiation(PAR) data. This feature
provides geographic reference to visualized data sets, and
has been proven very useful in our case study.

3-D data visualization visualizes multiple data sets or a
data set with multiple features. Additional data sets or fea-
tures may be visualized in the following ways,

1. On the additional dimension (Z-axis). Compared with
2-D visualization, the additional dimension may be
used to plot a data set with two features, one using a
color map and the other using Z-axis.

2. As multiple layers of images. Each data set can be
plotted as an individual layer, with its own scale on
Z-axis.

In addition, two options may be combined to reveal more
features of a data set. Figure 5 is a 3-D visualization of
Photosynthetically Active Radiation (PAR) data.

Data visualization operators may work with other opera-
tors to process and visualize data in various formats, includ-
ing non-grid data. To convert a location-based non-grid data
set to a grid data set, we first build a R-tree [4] to store and
retrieve the non-grid data set. A user may define the dimen-
sions of a grid used in conversion. A data interpolation op-
erator is then used to interpolate data points on the grid: to

5



Figure 5. 3-D Visualization of a PAR Data Set.

compute the value of a data point on the grid, its neighbour-
ing data points on the input non-grid data set are retrieved
from R-tree using Sort-Tile-Recursive (STR) algorithm [6].
The data point on the grid is interpolated from these neigh-
bouring points. As an example, in our case study the Pho-
tosynthetically Active Radiation (PAR) data comes as a se-
ries of data points in form of 〈longitude, latitude, value〉.
These non-grid data are then converted to grid data, which
are then visualized as 2-D raster image with a transparent
background. The 2-D image is overlaid on its related ter-
rain rendered by the Google Earth.

4 A Client-Server Architecture Design

An objective of the proposed software architecture is that
it shall support a variety of client devices, and yet it shall
be scalable for handling data-intensive precision agriculture
applications. Towards this end, the software architecture
adopts a client-server model as its overall architecture de-
sign. The design has a clearly-defined server interface using
a socket-based protocol. This enables the design to support
a range of Internet-connected devices, including mobile de-
vices, as long as they conform to the interface requirements.

In our client-server design, server(s) handles the ma-
jority of data processing, and a client device handles
human-computer interactions and visualizes results from
the server(s). Since most of heavy-lifting tasks are han-
dled by the server(s), requirements on computing power and

power assumption of a client device are reduced. The reduc-
tion on power assumption is specially important to a mobile
device, since often battery power limits its extended field
use. Furthermore, this client-server design enables us to al-
locate computation resources on the server end as needed,
or eventually move the server end to a cloud-based comput-
ing platform for even greater scalability.

Figure 6 shows the client-server architecture design in
UML deployment diagram. A client device communicates
with a server using a socket-based protocol. The communi-
cation layer is realized by Comm/Client on the client and
Comm/Server on the server. The server is in charge of
processing data and preparing the result for data visualiza-
tion on a client device. A feature of our client-server design
is that the task of data visualization is distributed among the
server and client devices: upon the completion of data pro-
cess and analysis, the visualization component on the server
(i.e. Visualization/Server) prepares the result as a
multi-feature grid data set, ready for being visualized on
the client. The visualization component on the client (i.e.
Visualization/Client) displays the final result by
using the client’s native graphic capability. For example,
our prototype tool includes a client application running on
Linux. The visualization component of the client applica-
tion optimizes data visualization using openGL, a computer
graphic programming standard supported by many high-
performance graphic cards.

We use 3-D visualization as an example to demonstrate
how our client-server architecture design may optimize per-
formance by distributing the task among servers and clients.
Figure 7 gives a sequence diagram showing messages ex-
changed during 3-D visualization. A typical sequence of
messages is initialized by a user’s request. The client com-
municates with the server through asynchronous messages.
The controller component of the server handles requests
from clients and maintains session information. For in-
stance, our system maintains a database of fields and data
sets associated with these fields. A connected client may
request to change the field of selection. The request is de-
livered through the communication layer to the controller,
which keep a record for the selected field.

To further improve the scalability of our design, the anal-
ysis component on the the server is multi-threaded, and
an analysis thread is created on demand per request from
a client. For the example shown in Figure 7, an analysis
thread is created for handling user’s request for 3-D visual-
ization. The controller sends the stored session information
(i.e. field id and data type) to the analysis thread.
The analysis thread queries the storage for data sets and pa-
rameters. It processes data based on a workflow defined in
a data-flow model (Section 3.1). The result is sent back to
the client. The visualization component of the client renders
3-D image using the graphic hardware on the client.

6



Figure 6. A Client-Server architecture design for deploying heterogeneous client devices.

Figure 7. The server interface in UML sequence diagram.

7



5 Implementation

To demonstrate the capability of the proposed software
architect, we use it to implement AgriD, an integrated data
analysis and visualization tool for precision agriculture.
AgriD is developed in Java. Its code base consists of 2946
lines of custom-developed Java code, and 14508 lines of
code from a range of external open-source tools.

The overall design of AgriD follows the client-server
design in Section 4. The communication layer uses a
socket-based communication protocol. The data exchanged
between communication components on server and on
client are encapsulated using JavaScript Object Notation
(JSON). The server interface defines a list of commands
and their arguments. A subset of these commands (e.g.
“changefield” and “display3D” etc) and a typical
message flow involving these commands have been illus-
trated in Figure 7.

The analysis subsystem of AgriD follows the data-flow-
driven design in Section 3. The analysis subsystem is im-
plemented on the top of an open-source data mining tool
RapidMiner [9]. RapidMiner provides an interpreter and
simulator for data-flow-driven models. We build on the top
the RapidMiner the capability of defining, serializing, and
executing data-flow design models. These models define
workflows of data processing. We developed a set of oper-
ators that implemented functions central to precision agri-
culture, including data visualization operators (Section 3.2),
and data importation and integration operators (Section 2).

AgriD has been used in an USDA-sponsored project on
canopy management of specialty crops. AgriD imports het-
erogeneous data collected from various sensor inputs, in-
cluding PAR data, weather data, and ground temperature
data. Because of various types of devices and configura-
tions used in the project, the format and semantics of in-
put data change over time. Our meta-data-model-based ap-
proach (Section 2) provides a flexible data importation and
integration schema for importing these heterogeneous data.

3-D data visualization is rendered using Jzy3d, an open
source Java library that enables a rapid display of scientific
data [5]. Because Jzy3d uses openGL to hardware accelera-
tion capabilities of a graphic card, it significantly improves
the performance of rendering 3-D images. A user can also
manipulate 3-D images on-the-fly, which provides the user
an interactive experience in data visualization.

6 Conclusion

Precision agriculture presents great challenges and also
unique opportunities for Computer Scientists, particularly
those in the areas of data analysis and decision support. Re-
cent advances in precision agriculture call for a software
tool that can process a large quantity of data collected from

a heterogeneous network of devices, support a variety of
client devices, and provide on-the-fly access. To address
these needs, we developed a software architecture that is to
significantly improve the efficiency, flexibility, and scalabil-
ity of data analysis and decision support in precision agri-
culture. To meet these objectives, our software architecture
has three distinctive features: (a) a meta-data-model-based
data importation module that supports custom-defined data
models. It is capable of importing data in various for-
mats from a variety of devices in different settings; (b) a
data-flow-driven data processing subsystem which supports
custom-defined workflows and data processing operators;
and (c) a client-server architecture design that supports a
variety of client devices, including the Apple iPad.

We implemented the software architecture in AgriD, an
open-source data analysis and visual tool for precision agri-
culture. AgriD has been successfully used in a USDA-
sponsored project on canopy management for specialty
crops. For the future work, we will continue to extend
this software architecture, including migrating it to a cloud-
based computing platform. We are currently developing
new data-mining techniques for canopy classification. In
future these new techniques will be implemented using the
software architecture.

References

[1] H. Auernhammer. Precision farming - the environmental
challenge. Computers and Electronics in Agriculture, 30(1-
3):31–43, Feb. 2001.

[2] R. Bongiovanni and J. Lowenberg-Deboer. Precision Agri-
culture and Sustainability. Precision Agriculture, 5(4):359–
387, Aug. 2004.

[3] Google. Google Earth. http://earth.google.com.
[4] A. Guttman. R-Trees: A Dynamic Index Structure for Spa-

tial Searching. In Proceedings of the ACM SIGMOD inter-
national conference on Management of data, page 47, 1984.

[5] Jzy3d team. Jzy3d. http://www.jzy3d.org.
[6] S. Leutenegger, M. Lopez, and J. Edgington. STR: a simple

and efficient algorithm for R-tree packing. In Proceedings
13th International Conference on Data Engineering, pages
497–506. IEEE Comput. Soc. Press, 1997.

[7] R. Nikkilä, I. Seilonen, and K. Koskinen. Software archi-
tecture for farm management information systems in preci-
sion agriculture. Computers and Electronics in Agriculture,
70(2):328–336, Mar. 2010.

[8] S. Peets, A. M. Mouazen, K. Blackburn, B. Kuang, and
J. Wiebensohn. Methods and procedures for automatic col-
lection and management of data acquired from on-the-go
sensors with application to on-the-go soil sensors. Comput-
ers and Electronics in Agriculture, 81:104–112, Feb. 2012.

[9] Rapid-I. RapidMiner. http://www.rapid-i.com, 2011.
[10] P. C. Robert. Precision agriculture: a challenge for crop nu-

trition management. Plant and Soil, 247(1):143–149, Nov.
2002.

[11] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing:
state-of-the-art and research challenges. Journal of Internet
Services and Applications, 1(1):7–18, Apr. 2010.

8


