
An Extensible Software Platform for Cloud-based Decision Support and
Automation in Precision Agriculture∗

Li Tan1,2† Hongfei Hou1 Qin Zhang2

1 School of Electrical Engineering 2 Center for Precision
and Computer Science and Automated Agricultural Systems

Washington State University Washington State University
Richland, WA 99354 Prosser, WA 99350

Abstract

Precision agriculture is a data-driven farming practice
that uses intra- and inter-field information to optimize farm-
ing operations. The “brain” of precision agriculture is
a decision support system (DSS) that acquires data from
various sources, analyzes them, and recommends actions
to farmers. Recently cloud computing has been used to
improve the scalability and reliability of a DSS. Cloud-
based DSSs present some major challenges for software
design:(1) how can a cloud-based DSS process a diver-
sified profile of intra- and/or inter-field data from various
sources? (2) how can a cloud-based DSS accommodate and
support the diversity of farming operations? (3) how can a
cloud-based DSS automate the entire decision process and
control field devices directly? we proposed an extensible
cloud-based software platform that integrated 3 novel com-
ponents to address these questions: (1) a meta-model-based
data acquisition and integration module that accepts data
in different formats and semantics; (2) an adaptive soft-
ware architecture supporting on-the-fly re-configuration of
decision modules; and (3) software-defined control, a new
software design paradigm we proposed for handling con-
trol diversity. It enables a DSS to control various field de-
vices through unified software-defined interfaces. We imple-
mented the platform in Agrilaxy, a cloud-based DSS, and
deployed it on Amazon Web Services (AWS). An early ver-
sion of Agrilaxy has been used in a USDA-sponsored project
on canopy management for specialty crops.

∗This research was supported in part by the U.S. department of Agri-
culture grant 20101304802. Any opinions, findings, conclusions, or rec-
ommendations expressed in this publication are those of the author(s) and
do not necessarily reflect the view of the U.S. Department of Agriculture.
†Corresponding author. Email: litan@wsu.edu.

1 Introduction

Modern agriculture is increasingly becoming a data-
driven operation. On the frontier of such trend is preci-
sion agriculture. Precision agriculture is a farming prac-
tice using technologies to measure and to respond to inter-
and intra-field conditions. Precision agriculture plays a cen-
tral role in emerging “smart farming” movement [4], which
makes farms more “intelligent” using information, sensing,
and other technologies. At the core of precision agriculture
are Decision Support Systems (DSSs). A DSS works as the
“brain” of a smart farm: it acquires inter- and intra-field
measurement from different sources, analyzes the data, and
recommends actions to farmers. A next-generation DSS is
also expected to automate the entire decision process, and
to control field devices directly with optimal decision. The
success of precision agriculture, and hence “smart farming”
is largely hinging on how intelligent a DSS is.

Our software platform is developed to address challenges
in designing a cloud-based DSS. The scalability and relia-
bility of cloud computing makes it particularly attractive for
DSSs. To achieve economies of scale, a DSS is expected to
serve a large number of farms, and their demand for de-
cision support may vary drastically on and off a growing
season. A key benefit of cloud computing is that it can
pool computing resources and allocate them on demand.
A cloud-based DSS can therefore scale up or down its re-
source usage on-the-fly. Compared with a desktop DSS, a
cloud-based DSS also enjoys many other benefits. For ex-
ample, software upgrade is carried out in the cloud, trans-
parent to users. A cloud-based DSS also provides an online
platform to connect farmers and developers. Nevertheless,
designing a cloud-based DSS is a paradigm shift from de-
signing a desktop DSS, and it presents several major design
challenges.

From the perspective of system engineering, a modern
farming operation is a complex dynamic system, with many

1



inputs and variables to consider (e.g. field condition and
crop variety) and many decisions to make (e.g., irrigation
and fertilization schedules). Because of so many variations,
each farming operation has its unique character, for which
a cloud-based DSS must be tailored. The diversity of data
sources, operations, and field devices presents some major
challenges for designing a cloud-based DSS:

(i). A DSS needs to work with different sources to acquire
various intra- and inter-field measurement data. These
sources may include field sensors (e.g. soil moisture
sensor [10]), remote sensing data (e.g. Drone imag-
ing [5]), and online data services (e.g. AgWeather-
net [16]). Each data source may have its own data
format and/or semantics. A research question is how
a DSS can process a diversified profile of intra- and/or
inter-field data from various sources.

(ii). Each farming operation has its own character, and
hence it has a unique need for decision support. For
example, cherry and apple growers have different sets
of decisions to make. Even within cherry orchards,
decisions may vary drastically due to crop variety and
terrain condition etc. A research question is how a DSS
can accommodate the diversity of farming operations.
The design of a DSS needs to be adaptive to existing
and future farming operations.

(iii). An ultimate goal of precision agriculture is to auto-
mate the entire decision process, from collecting data,
to synthesizing decisions, to applying actions to field
devices. Existing DSSs are focusing on the former
two. A major research question is how a DSS can au-
tomate the entire decision support process and control
a variety of field devices directly and safely.

To address these research questions, our software plat-
form integrated three novel technological components.

1. Meta-model-based data acquisition and integration.
In [12] we proposed a meta-model-based integration
technique for a DSS with a client/server architecture.
We extended our previous work in [12] to support
cloud-based data acquisition and integration. We de-
veloped a RESTful interface for cloud-based data ac-
quisition through a unified JSON-based interface.

2. An adaptive software architecture for decision mod-
ules. The architecture enables on-the-fly re-
configuration of decision modules. A user can cus-
tomize decision logics through re-configuration mech-
anisms including dataflow re-routing and block param-
eterization.

3. Software-defined control (SDC). Inspired by the con-
cept of software-defined network (cf. [7]), we pro-

posed SDC as a new software design paradigm to han-
dle the diversity of field devices. SDC provides a lay-
ered abstraction of devices through software-enabled
adaptation. Each layer provides an abstract control in-
terface featuring two-way communication. A control
interface in SDC is defined by software, and commu-
nication via interface is carried out via events and vari-
ables. SDC enables a DSS to work with existing and
future devices through a unified software-defined con-
trol interface.

The rest of the paper is organized as follows: Section
2 provides an overview of our platform; Section 3 dis-
cusses our meta-model-based data importation and integra-
tion technique; Section 4 introduces an adaptive software
architecture for decision modules; Section 5 proposes soft-
ware definition control, a novel software design paradigm to
tame control diversity; Section 6 discusses our implemen-
tation of the platform and its deployment on Amazon Web
Services (AWS); and finally, Section 7 concludes the paper.

2 Platform Overview

Figure 1 shows an overview of the platform. It has 3 ma-
jor subsystems: (1) a data acquisition and integration sub-
system, which acquires and integrates data from different
sources. The subsystem provides a web interface to work
with both active (i.e. sources posting data to a URL) and
passive (i.e. sources accepting queries) data sources. In
precision agriculture, each data source may have its own
data format and semantics. To accommodate the diver-
sity of data sources, the subsystem uses a meta-model-
based approach to define and interpret data coming from
a source. Meta-model-based data integration will be dis-
cussed in Section 3; (2) an adaptive decision subsystem,
which synthesizes device-independent decisions using ac-
quired data. The decision subsystem comprises decision
modules. It deploys an adaptive software architecture (Sec-
tion 4) that enables on-the-fly re-configuration of decision
modules through dataflow re-routing and block parameteri-
zation; and (3) a device control subsystem. The subsystem
utilized software-defined control (SDC, Section 5), a novel
software design paradigm proposed in [11]. SDC translates
a device-independent decision to commands for field de-
vices through multi-stage software-enabled adaptation.

3 Meta-Model-Based Data Acquisition and
Integration

A major challenge for cloud-based DSSs is how to
handle the diversity of data sources. To capture intra-
and inter-field variabilities, precision agriculture uses data

2



Data Acquisition 
and Integration

Decision Modules

Plant Phys. Models

Block Params

W
eb

 In
te

rf
ac

e
Data 
Integ.

Semantics
Syntax

Meta Models

Software-Defined
Control

Cloud-based
Decision Support & Automaton

Irrigation 
Controller 0

Irrigation 
Controller 1

Irrigation 
Controller 2

Fertigation
Controller

Fertilizer Injector

Vineyard

Apple Orchard

Cherry Orchard

UAV

USDA Soil Databases

Soil Sensor

Online weather 
network

Cherry Grape

Irrig1

Irrig0

Pest_ctrl

Fertig.

De
ci

sio
n 

pl
an

e

Se
rv

ic
e 

Pl
an

e
Irr

ig
.

Ap
p

Fe
rt

. 
Ap

p
Pe

st
 

Ap
p

De
vi

ce
 p

la
ne

Figure 1. Extensible software platform for cloud-based decision and automation

from a variety of sources, for example, sensors measur-
ing soil moisture [1] and organic matters [6], UAVs sur-
veying biomass [5], mobile infrared sensor platforms col-
lecting Photosynthetically Active Radiation (PAR) data [8],
and online databases storing weather [16] and soil compo-
sition data [14]. These data come in different formats and
semantics. Moving a DSS to the Cloud makes the challenge
even greater: a cloud-based DSS is expected to serve many
farms, each of which may have different data sources.

To handle data diversity, we developed a meta-model-
based data acquisition and integration technique. The tech-
nique enables a flexible data acquisition through custom-
defined data formats and semantics. Users define data for-
mats and semantics for a data source using a two-tier data
modeling system. An input data set is interpreted based on
a custom-defined data model. The data set is then translated
into a unified internal format acceptable to decision mod-
ules. By separating data diversity from the rest of the DSS,
the technique makes it possible to develop a flexible and
extensible analytical tool accommodating a variety of data
sources.

3.1 Meta Data-Model-Based Data Integration

The data integration module uses a meta-model-based
technique for defining and interpreting data from different
source. The technique is based on a layered abstraction of
data syntax and semantics. A data model in XML is used to
specify the format of an input data set. A meta-model in the
XML schema (XSD) defines the scope of valid XML data
models. And finally, a data importer specifies operational
semantics for the XML meta data model. Operational se-
mantics define how data associated with each element of a

meta model shall be interpreted and translated into a unified
internal format.

To illustrate the workflow, consider an example in which
the DSS platform needs to work with a new type of soil
sensors. To complicate the matter further, soil sensors’
data loggers can be configured to produce data in custom
formats, e.g., data columns in different orders. Tradition-
ally a DDS’s data importation algorithm needs to be re-
programmed to accept the new type of sensors. Using our
technique, a developer only needs to provide a new data
importer along with a XSD file specifying data models sup-
ported by the importer. Figure 2 illustrates the XSD model.
The XSD model specifies acceptable XML data models.
For example, a valid XML data model must define at least
one “DATAFILE” element, and each “DATAFILE” element
must contain a “UID” element. Note that the “Data time”
segment has one of two types: a “Date seg” type compris-
ing 6 elements (“year” · · · “second”), and a “Date single”
type. Figure 3 shows a XML data model conforming to the
XSD meta data model in Figure 2. The XML data model
specifies the exact structure of a data set generated by a soil
sensor. For instance, the XML file in Figure 3 specifies that
each data set contains just one data file (“data par.csv”), and
inside the data file, 5 data columns are organized in 3 log-
ical segments: “UID”, “Measurement”, and “Data time”.
In this example, a data file following the XML data model
in Figure 3 is a CSV file (data par.csv) comprising rows of
data, each of which has 5 columns (“UID”, “Soil moisture”,
“Soil temperature”, “Soil nitrogen”, and “Date single”).

Operational semantics for a data set are operations that
interpret the data set and translate it into an uniformed in-
ternal format. For example, in an implementation of our
platform, the internal format for date/time is a multiple-

3



DATA DATAFILE

UID
OP

Date_time
OP

Measurement
OP

…

Soil_temperature

Soil_moisture
OP

1 … ∞

OP

Soil_nitrogen
OP

day

month
OP

OP

Date_single

Date_seg
OP

OP…
…

year
OP

hour
OP

minute
OP

second
OP

Figure 2. A XML schema file defining a meta-
model for a type of soil sensors.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<DATA xmlns=” A g r i l a x y ”

x s i : s c h e m a L o c a t i o n =” A g r i l a x y f o r m a t . xsd ”>
<DATAFILE f i l e n a m e =” d a t a p a r . c sv ”>

<UID t y p e =” s t r i n g ” />
<Measurement>
<S o i l m o i s t u r e u n i t =” p e r c e n t a g e ” t y p e =” f l o a t ” />
<S o i l t e m p e r a t u r e u n i t =” f ” t y p e =” f l o a t ” />
<S o i l n i t r o g e n u n i t =” p e r c e n t a g e ” t y p e =” f l o a t ” />

< / Measurement>
<D a t e t i m e f o r m a t =”YYYY/MM/DD HH:MM:SS” t y p e =

” d a t e t i m e ” />
< / DATAFILE>

< /DATA>

Figure 3. A XML file defining the data model
for a soil sensor. The XML file conforms to
the meta data-model in Figure 2.

field record, in which date and time are kept separately.
The operational semantics for “data single” is hence an
algorithm that translates a string format of “YYYY/M-
M/DD HH:MM:SS” into a record with separate fields for
date and time. In our approach, operational semantics asso-
ciated with each element of the XSD meta-model (i.e. “OP”
in Figure 2) is defined in the data importer.

As a summary, to support a new type of data sources, the
DSS platform can be extended with a new data importer and
its meta-model in XSD. A data source of the new type pro-
vides a XML model conforming to the XSD meta-model.
The XML model is used by the data importer to interpret
the data format of the new data source.

3.2 Cloud-based Data Acquisition

Before a cloud-based DSS can process data, it must ac-
quire them from a data source. Data Acquisition Module
(DAM) in our platform provides a web portal for commu-
nicating with data source. The web portal is a collection of
RESTful (Representational State Transfer) APIs [2]. These
RESTful APIs support data transfer through standard HTTP
requests (POST, GET, DELETE etc). The APIs support
data acquisition in batch mode and in real time. In the batch
mode, a data source may upload a data set as a file, along
with a XML model specifying its format. In the real-time
mode, a data source may request a session by posting its
XML data model to the web portal. DAM communicates
with the Data Integration Module (DIM) to find the right
data importer accepting the XML data model. Once the
XML model is validated, the web portal returns a session
ID to the data source. The data source then posts data in real
time, using the session ID as its identifier. The data will be
interpreted by the data importer according to the XML data
model provided by the data source.

The web portal works with both active and passive data
sources. An active data source, such as Internet-connected
soil sensors, can initiate communicate and post data to the
web portal. An passive data source, such as USDA’s web-
based soil databases [14], does not initiate communication.
Instead, it accepts data inquiries. For each passive data
source, DAM includes a proxy for the data source. The
proxy queries the passive data source according to a pre-
defined schedule. The data from the data source can then be
posted to the web portal either in batch or in real time.

4 Adaptive Software Architecture for Deci-
sion Modules

Agriculture operations are complex dynamic systems
with many variables, such as field conditions and crop vari-
ations. Each farming operation has its own character. This
operational diversity presents even a greater challenge to
a cloud-based DSS than to a traditional site-specific DSS.
A site-specific DSS, running on a desktop or a dedicated
server, is configured for a specific operation. In compar-
ison, a cloud-based DSS serves many farms concurrently,
each of which has its own need for decision support. A key
challenge in designing a cloud-based DSS is how it can ac-
commodate the diversity of farming operations.

To handle this operational diversity, we developed an
adaptive software architecture for decision modules. The
architecture enables individual farmers to customize deci-
sion logic on-the-fly through re-configuration mechanisms.
The example in Figure 4 illustrates how an irrigation deci-
sion module may be adapted for a specific farming opera-
tion, using re-configuration mechanisms including dataflow

4



Soil sensor 
data importer
Soil Test Data 

importer

In-field Weather 
Station Importer

AgWeatherNet 
Importer

USDA Soil 
Survey importer

MPP (crop)

Evp. Calc.

MEVP

Evaporation

Irrigation 
Scheduler Irrigation 

Schedule

Irrigation Decision ModuleData Integration 
Module DIM

Block Params: MWR , MPP 
Value Param: crop

IDM(crop, MPP, MWR)

Weather.com
Data Importer

Precipitation 

Temp.

Dew Point

Forcasting

MWR

Water Retention

WR Calc.

Figure 4. An adaptive irrigation decision mod-
ule (IDM), where MWR and MPP are a water
retention model and a plant physiology model
respectively, and crop specifies the type of
crop.

re-routing and block paramterization.

Dataflow re-routing The adaptive architecture follows a
data-flow-driven design. Blocks are connected through
dataflows, represented as directed edges in Figure 4. The
data-flow-driven design gives users an intuitive way to
view and configure a decision logic: a farmer may change
the decision logic by re-routing its data flow. In the ex-
ample shown in Figure 4, the farmer may choose to re-
place weather.com with AgWeatherNet as the data source
for weather information. To do so, the farmer simply re-
routes the source of the data flow from the data importer
for weather.com (shown as a dark line), to the one for Ag-
WeatherNet (shown as a brown dash line). AgWeathernet
is a network of weather stations in the Pacific Northwest
region [16]. By switching to AgWeathernet, the same irri-
gation decision module (IDM) may produce an irrigation
schedule based on real-time on-the-ground weather data.
All these changes through dataflow re-routing can be done
on-the-fly without requiring additional programming.

A constraint for dataflow re-routing is that new and old
data sources/destinations must agree on the same data for-
mat. In the example in Figure 4, the constraint is satisfied
using the meta-model-based data integration technique in
Section 3.1. Data importers translate input data from differ-
ent data sources into a uniform internal format, making it
easier to compliant to the requirement for data re-routing.

Parameterization by values Another re-configuration
mechanism we used is parameterization by values, in which
a block has one or more parameters. These parameters are
bounded with values as part of run-time setting. A param-

eter value may be supplied by a user via the run-time envi-
ronment. The value may be passed down block hierarchy: a
block may bind the value with a parameter of its child block.
In the example in Figure 4, the irrigation decision module
(IDM) takes crop as its parameter, where crop specifies the
type of the crop for an agricultural operation. IDM then
passes crop to the plant physiology model MPP .

Parameterization by blocks Our adaptive architecture
also supports parameterization by blocks. in which the do-
main of a parameter is a set of blocks sharing the same in-
terface. The technique is developed to promote the reuse
of decision logic. Often time decisions for similar farming
operations share many common features, and hence under-
lying decision logics share common components. Fitting a
decision logic to a similar operation may require changes
to only part of the logic. Parameterization by blocks al-
lows modification of a sub-logic, while preserving the over-
all structure of a decision module. Parameter blocks may
be passed down a module hierarchy. For instance, C(B) is
denoted for a parameter block C with B as its parameter.
During an execution, B is bound with a real block B′. The
resulting block C(B′) is the same as C, except that param-
eter B is bounded with block B′.

As an example, consider the IDM in Figure 4. IDM
has two block parameters: MWR, a parameter block for a
water retention model, and MPP , a parameter block for a
plant physiology model. These block parameters are used
as place holders in the construction of IDM. At run time,
MPP is bound with a specific plant physiology model, such
as the Water-GreenLab [9], and MWR with a specific water
retention model, such as the Van Genuchten model [15].

5 Software Defined Control

Today’s DSSs are designed to recommend decisions to
farmers. An ultimate goal of a next-generation DSS is to
automate the entire decision process. This new generation
of DSS, which we refer to as Decision Support and Automa-
tion System (DSAS), will be capable of acquiring data from
field and other sources, analyzing the data, and controlling
field devices directly with an optimal decision. In agricul-
tural practice, farmers deploy a variety of devices in their
field applications, for example, irrigation and pest control.
These field devices generally come with their own control
interfaces. To complicate the matter further, a cloud-based
DSS is expected to serve many farms concurrently, each of
which may have its own set of field devices. A question in
cloud-based control automation is how to control a variety
of field devices directly and safely from the cloud.

To address this research question, we proposed software-
defined control in [11], a new software design paradigm that
tames control diversity through software-enabled adapta-
tion. In a nutshell, software-defined control makes devices

5



Figure 5. Software defined control: an illus-
trative example

interoperable by wrapping them with a unified control in-
terface defined by software. Software-defined control gives
a device manufacturer a flexible and non-intrusive way to
work with different DSSs. To work with a new DSS, a
device manufacturer implements a software-defined control
interface for a device. The software-defined interface en-
capsulates the device’s actual control interface, and it pro-
vides an abstract and unified interface of the device, which
the DSS can access uniformly.

The objective of software-defined control is to trans-
late device-independent decisions synthesized by a DSS, to
device-specific control signals. The translation is carried
out through a 3-step software-enabled adaptation.

1. A decision plane synthesizing device-independent de-
cisions. These decisions specifies field actions at an
abstract level. For example, a device-independent irri-
gation decision specifies how water is distributed in a
field, regardless of the layout of the irrigation system
in the field;

2. A service plane translating a decision to commands for
a device. Commands are delivered to a device through
the device’s own control interface;

3. A device plane executing commands it received and
applying actions (e.g. switching on/off an irrigation
valve) to a field.

Figure 5 shows the 3-layer architecture implementing
software-defined control, using a multi-zone irrigation sys-
tem with fertigation attachment as an example. Fertigation
is a practice of applying fertilizers by injecting them to an
irrigation system [3]. In this example, the underlying irriga-
tion system has 3 irrigation controllers (Devirri0, Devirri1,
and Devirri2) and 2 fertigation controllers (Devap0 and
Devap1). Each irrigation controller is capable of controlling

multiple zones through irrigation control valves. Each fer-
tigation controller controls an injector attached to the main
water supply line, and each injector can be supplied with a
specific fertilizer. For simplicity, we did not show control
valves and injectors in Figure 5.

The decision plane is embedded in a decision module. In
our example, it is part of an irrigation/fertigation decision
module. A decision plane translates a decision made by the
decision module into a unified and abstract format. In our
example, the decision produced by the decision plane is a
geological distribution of water volume, as well as fertil-
izer, as illustrated by the color map in Figure 5. The device-
independent decision does not take into the account irriga-
tion system layout such as zoning, nor device-dependent in-
formation such as maximal flow volume.

The service plane translates the abstract decision made
by the decision plane, to commands accepted by the de-
vice plane. Here a service refers to a set of logically re-
lated functions. The service plane comprises a set of ser-
vice apps, and each app implements the functions for its
service. In our example, the service plane includes service
apps for irrigation (SAirri), fertigation (SAfert), and pes-
ticide application (SApest). Each service app is responsible
for communicating with the device plane. Service apps im-
plement logic functions on top of physical devices, and they
may share same physical devices among each other. In our
example, SAirri and SAfert both communicate with irri-
gation controllers (Devirri0, Devirri1, and Devirri2). In
addition SAfert also controls Devap0. Upon receiving a
fertigation decision, SAfert computes a control schedule
for underlying devices, and sends the schedule to the con-
trollers in the device plane.

The device plane wraps actual field devices with an API
accessible by a service plane. For an off-the-shelf web-
enabled device such as an Internet-connected irrigation con-
troller, the device plane simply translates function calls by
the service plane, to HTTP requests to the irrigation con-
troller. For a stand-alone irrigation controller, the device
plane also needs to implement a web interface, for exam-
ple, an Internet gateway for the irrigation controller.

It shall be noted that all 3 layers and their interfaces sup-
port two-way communication. Borrowing a similar nota-
tion in software-defined network [7], we denote southbound
traffic for data and control flowing from a higher layer to
a lower one, and northbound traffic for data and control
flowing in the reverse direction. Previously our discussion
focused on southbound traffic. Northbound traffic carries
feedback provided by a lower layer. Northbound traffic is
crucial for run-time monitoring and adaptation, enabling a
higher layer to monitor lower layers and adjust its operation
accordingly.

Software-defined control interface A feature of software-
defined control is that its control interface is defined purely

6



by means of software. In general, the decision plane is part
of a decision module, and the service plane is part of a de-
vice module. The control interface in software-defined con-
trol refers to the interface between the decision plane and
the service plane. Formally, the control interface is defined
as a tuple 〈Vin, Vout, Fin, Cout〉, where Vin and Vout are the
set of input and output variables, respectively, Fin is a set
of input functions, and Cout is a set of call-back registration
functions. Input variables and functions are used for imple-
menting southbound traffic, i.e., data and control flowing
from the decision plane to the service plane. Formally a
function f ∈ Fin represents a type of events: to pass an
event e(p0, · · · , pn) to the service plane, the decision plane
call the function fe with parameters p0 · · · pn.

Output variables and call-back registration functions are
used to implement northbound traffic, i.e., the data and con-
trol flow from the service plane to the decision plane. In
order for the service plane to pass an event e′(p0, · · · , pm)
to the decision plane, the latter has to register a call-back
function fe′ with the service plane. To do so, the decision
plane calls the call-back registration function ce′ for event
e′ with the parameter fe′ . When event e′(p0, · · · , pm) oc-
curs, the service plane calls f ′

e(p0, · · · , pm) to deliver the
event to the decision plane.

6 Implementation

To test the feasiblity of our proposed platform, we are
using it to guide the implementation of Agrilaxy, a cloud-
based decision support and automation system for precision
agriculture. Agrilaxy provides farmers, developers, and de-
velopers an online platform for developing, exchanging,
and applying web apps for precision agriculture. These web
apps customize and extend Agrilaxy for a precision agricul-
tural application. Farmers may select and configure web
apps to fit to their own needs for decision support and au-
tomation, and a researcher/developer may develop a web
app that extends the functions of Agrilaxy. Examples of
web apps include data importers (Section 3), decision apps
(Section 4), and software-defined service apps (Section 5).

Agrilaxy is implemented using Ruby on Rails. Ruby is a
dynamic typing language popular among in the web devel-
opment community. Part of its popularity is due to the Rails
framework. Rails is a collection of Ruby libraries, known as
GEMs, that support web development using Model-View-
Controller (MVC) design pattern. Communication between
Agrilaxy and external entities, such as data sources and field
devices, are carried out through a set of RESTful APIs im-
plemented using Rails. The RESTful APIs support data ex-
change in Javascript Object Notations (JSON) and XML,
two open-standard data exchange formats. The current ver-
sion of Agrilaxy comprises approximately 8056 lines of
Ruby code.

Agrilaxy has been tested on Amazon Web Services
(AWS). We used PostgresSQL as our underlying databases.
One of important design issues for a cloud-based DSS is
data privacy. Farmers often see field data as the extension
of their physical properties. To improve data privacy, we
used a multi-tenancy database design similar to the one we
proposed in [13]. For each farmer, his/her field data are par-
titioned and stored in separate sets of data tables. When a
farmer is authenticated to access Agrilaxy, he/she is given
only the permission to access data tables storing his/her own
farming data. An early version of Agrilaxy has been used to
process field data in a USDA sponsored project for canopy
management.

7 Conclusion

Precision agriculture plays a central role in transforming
agriculture into a data-driven industry. At the core of pre-
cision agriculture is a decision support system (DSS). Re-
cently Cloud computing is being used to improve the scala-
bility and reliability of a DSS. Nevertheless, cloud-based
DSSs present some major challenges in software design,
particularly when dealing with the diversity of data sources,
farming operations, and field devices. We proposed an ex-
tensible software platform to address these challenges. The
platform comprises three major components: (1) a meta-
model-based data acquisition and integration technique en-
abling a DSS to work with a variety of data sources; (2)
an adaptive software architecture for decision modules sup-
porting on-the-fly customization of a DSS for a specific op-
eration; and (3) a novel software defined control technique
enabling a cloud-based DSS to work with a variety of field
devices. We are implementing the platform in Agrilaxy, a
cloud-based DSS. An early version of Agrilaxy has been
deployed on Amazon Web Services, and it has been used to
process field data in a USDA-sponsored project on canopy
management.

It is worth noting that the technologies developed in this
work are not limited to precision agriculture. For example,
software-defined control can be used to handle control di-
versity for cloud-based smart Internet-of-Things (IoT) sys-
tems. It enables software-defined integration of IoT, allow-
ing these devices to have a unified control interface defined
entirely by software. The meta-model-based integration
technique may also be applied to other cloud-based data-
driven applications working with different data sources.

References

[1] R. Cardell-Oliver, M. Kranz, K. Smettem, and K. Mayer. A
Reactive Soil Moisture Sensor Network: Design and Field
Evaluation. International Journal of Distributed Sensor Net-
works, 1(2):149–162, feb 2005.

7



[2] R. T. Fielding and R. N. Taylor. Principled design of the
modern Web architecture. In Proceedings of the 22nd in-
ternational conference on Software engineering - ICSE ’00,
pages 407–416, New York, New York, USA, jun 2000. ACM
Press.

[3] A. Gärdenäs, J. Hopmans, B. Hanson, and J. Šimnek. Two-
dimensional modeling of nitrate leaching for various ferti-
gation scenarios under micro-irrigation. Agricultural Water
Management, 74(3):219–242, jun 2005.

[4] F. Guerrini. The Future of Agriculture? Smart Farming.
http://www.forbes.com/sites/federicoguerrini/2015/02/18/the-
future-of-agriculture-smart-farming/, feb 2015.

[5] S. Herwitz, L. Johnson, S. Dunagan, R. Higgins, D. Sulli-
van, J. Zheng, B. Lobitz, J. Leung, B. Gallmeyer, M. Aoy-
agi, R. Slye, and J. Brass. Imaging from an unmanned aerial
vehicle: agricultural surveillance and decision support. Com-
puters and Electronics in Agriculture, 44(1):49–61, jul 2004.

[6] J. Hummel, K. Sudduth, and S. Hollinger. Soil moisture and
organic matter prediction of surface and subsurface soils us-
ing an NIR soil sensor. Computers and Electronics in Agri-
culture, 32(2):149–165, aug 2001.

[7] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothen-
berg, S. Azodolmolky, and S. Uhlig. Software-defined net-
working: A comprehensive survey. Proceedings of the IEEE,
103(1):14–76, jan 2015.

[8] B. Lampinen, V. Udompetaikul, G. T. Browne, S. G. Met-
calf, W. L. Stewart, L. Contador, C. Negrón, and S. K. Upad-
hyaya. A mobile platform for measuring canopy photosyn-
thetically active radiation interception in orchard systems.
HortTechnology, 22(April):237–244, 2012.

[9] B. Pallas, C. Loi, A. Christophe, P. H. Cournède, and
J. Lecoeur. Comparison of three approaches to model
grapevine organogenesis in conditions of fluctuating tem-
perature, solar radiation and soil water content. Annals of
botany, 107(5):729–45, apr 2011.

[10] S. Peets, A. M. Mouazen, K. Blackburn, B. Kuang, and
J. Wiebensohn. Methods and procedures for automatic col-
lection and management of data acquired from on-the-go
sensors with application to on-the-go soil sensors. Comput-
ers and Electronics in Agriculture, 81:104–112, feb 2012.

[11] L. Tan. Cloud-based Decision Support and Automation for
Precision Agriculture in Orchards. In 5th IFAC conference
on Sensing, Control and Automation Technologies for Agri-
culture, Seattle, WA, 2016.

[12] L. Tan, R. Haley, and R. Wortman. An Extensible and Inte-
grated Software Architecture for Data Analysis and Visual-
ization in Precision Agriculture. In the proceedings of IEEE
Int’l Conf. on Info. Reuse and Integration, 2009.

[13] L. Tan, R. Haley, and R. Wortman. Cloud-Based Harvest
Management System for Specialty Crops. In Proc. of IEEE
4th Symp. on Network Cloud Computing and Apps., 2015.

[14] USDA Natural Resources Conservation Services. Web Soil
Survey. http://websoilsurvey.sc.egov.usda.gov/, 2015.

[15] M. T. van Genuchten. A closed-form equation for predicting
the hydraulic conductivity of unsaturated soils. Soil Science
Society of America Journal, 44(5), 1980.

[16] Washington State University. AgWeatherNet.
http://weather.wsu.edu/awn.php, 2015.

8


