

Cloud-based Decision Support and Automation for Precision

Agriculture in Orchards

Li Tan
School of Electrical Engineering and Computer Science and Center for Precision & Automated Agricul-

tural Systems, Washington State University

Abstract:

Recent technological and commercial developments make cloud computing an affordable, scalable,
and highly-available platform technology. Meanwhile, precision agriculture is showing its potentials by
improving agricultural operations through better data-driven decision making. Nevertheless, further
development of precision agriculture requires better technology and tools to process data efficiently at
a reasonable cost, and to translate the data to better decisions and actions in a field. We developed a
framework for cloud-based Decision Support and Automation systems that can acquire data from
various sources, synthesize application-specific decisions, and control field devices from the Cloud. A
distinctive feature of our framework is its extensible software architecture: decision modules can be
added and/or configured for a specific operation. The platform features a device-agnostic frontend that
can process incoming data in different formats and semantics. Finally, the platform incorporates
software-defined control, a new software design paradigm we proposed to enable versatile and safe
control of field devices from a cloud computing platform. An early version of the system has been
developed and tested with support from the USDA.

Key words: cloud computing, decision support and automation, precision agriculture, software-defined
control.

1. Introduction

Precision agriculture is a site-specific farming practice that uses technologies to measure and respond
to inter and intra-field variability in crops. It has been seen as a critical tool for increasing agricultural
productivity while preserving natural resources. The “brain” of precision agriculture is a decision support
system (DSS) that helps a grower process and respond to intra- and inter-field data. With recent
technological advances, particularly sensors technology and online data services, agriculture is
increasingly becoming a data-rich operation. Particularly specialty crop industry in US is going through
a transformation through the use of information technology. By the USDA definition, specialty crops are
“fruits and vegetables, tree nuts, dried fruits, horticulture, and nursery crops (including floriculture).”
Specialty crops are responsible for half of the gate value of US agricultural output [1]. Compared with
commodity crops, special crops are more site-specific and labor-intensive. It is sensitive to variation in
field, labor situation, and many other factors. Whereas many agriculture operations can use a decision
support system, specialty crops particularly may benefit from a better decision support system, as a
majority of orchards today still follow a traditional human-centric decision process.

Developing a better decision support system for specialty-crop industry presents some specific
challenges in information technology. Specialty-crop operations are highly seasonal. Requests for
decision support can fluctuate drastically on- and off-seasons. One challenge is how to meet the
fluctuating demands while still providing highly available services. Moreover, each orchard has its own
unique operation characteristic. Another challenge is how to develop a decision support system that
can be reconfigured for a specific operation. Finally, a precision agriculture operation is a close-loop
control system, with inputs (e.g. sensors and other data sources) from a field and feedbacks (e.g. field
actions) to the field. A traditional decision support system emphasizes only on the first part of the control
loop, that is, taking inputs and synthesizing decisions. A grand challenge is how to close the control
loop by controlling field devices safely with optimized decisions.

According to the official NIST definition, cloud computing is "a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction."[2]. Cloud computing is inspired by a utility delivery

model: computing powers may be delivered on demand just like electricity or gas, in an effort to meet
demands for scalable, highly-available, and economical Internet-connected computing resources. A
cloud computing service enables users to request and release resources on demand, and to pay for
only what has been used. By pooling resources together, a cloud computing service generally has a
higher availability than traditional user-operated server networks.

Cloud computing is particularly beneficial for decision support in precision agriculture for specialty crops.
First, precision agriculture in an orchard is a data-rich operation. A decision support system needs to
handle a large volume of data from sensors and other sources. Cloud computing provides scalability
necessary for handling these data in real time. Second, the demand for decision support fluctuates
greatly on- and off-seasons. Through resource provisioning [3], cloud computing can change quickly
the number of server instances and other resources, based on the demand. Finally, agriculture decision
support systems are increasingly hosted on Internet, to take advantage of internet-connected devices
(Internet of things[4]) and to build an online community. A cloud service provider handles the complexity
of running hardware and maintaining middleware for enhanced availability and security. This leaves
developers to focusing on the logics of a web-based decision support system.

Moving towards cloud-based decision support presents opportunities as well as new challenges. First,
precision agriculture uses a variety of sensors and data sources, each of which may have its own data
format and semantics. A cloud-based decision support system needs to handle a diversified profile of
data types and formats; second, traditionally a decision support system is application-specific. A farmer
may need to access different systems for a specific application (e.g. irrigation, fertilization, etc). To
provide a streamlined user experience, a cloud-based decision support system shall be able to be
extended and configured for different applications; and finally, recent development of Internet of Things
(IoT) links field devices through Internet. To capitalize the progress in IoT, a future decision support
system is expected to control field device safely from the cloud.

In this paper we discuss our framework for cloud-based decision support and automation systems
(DSAS), and our experience of implementing it in Agrilaxy, a DSAS we developed from ground up to
take advantage of the scalability and availability of a cloud computing platform. We developed new
techniques to address the design challenges faced by a cloud-based DSAS. The rest of the paper will
be organized as follows: Section 2 gives an overview of our framework. In Section 3 we discuss its
device-agnostic data importation frontend, which works with different data sources with custom-defined
data format and semantics. In Section 4 we discuss its extensible software architecture for decision
modules. In Section 5 we introduce Software-Defined Control paradigm, a new software design
paradigm for controlling physical devices in a field from the cloud. Section 6 discusses the current
implementation of Agrilaxy, Finally, Section 7 concludes this paper.

Device-Agnostic
Data Importation

Extensible and Adaptive
Decision Modules

Plant Phys. Models

D
at

a
A

cq
u

is
it

io
n

Data
Integrator

Data Models

Se
rv

ic
e

 In
te

rf
ac

e

.
A

d
ap

ti
ve

 A
p

p
s.

D
e

vi
ce

 In
te

rf
ac

e

Software-Defined
Control

Cloud-based
Decision Support & Automaton System

Grower

Irrigation
Controller

Fertigation
Controller

Fertilizer Injector

Cherry Orchard

Boom Sprayer
Sprayer

Controller

UAV

Nat’l Weather Service

Weather Station

Soil Sensor

Decision Apps

Web Portal

Figure 1 Cloud-based decision support & automation system: an overview

2. System overview

Figure 1 shows the overview of our framework for cloud-based DSASs. It has a device-agnostic data

importation frontend. The front end uses data models to define the formats and semantics of input data

sets. The details of a data model are given in Section 2. Its decision modules are developed with an

extensible software architecture, featuring a hierarchical modular design. A module, referred to as a

web app in the DSAS, is characterized by its interfaces. A new web app can be added to decision

module hierarchy on-the-fly, or used to replace an existing module with a compatible interface. The

details of our extensible software architecture are introduced in Section 3. In Section 4, we introduce

Software-Defined Control, a new software design paradigm for managing the complexity of controlling

a diversified profile of devices. Software-defined control virtualizes physical devices through layers of

abstraction. Each layer abstracts the implementation details of the layer underneath, while providing a

uniform control interface to the layer above.

3. Device-agnostic data importation

Precision agriculture is characterized by the use of different sensors (e.g. soil moisture sensor, nitrogen
sensor) and data sources (e.g. weather site) to measure intra- and inter-field variability. A cloud-based
DSAS needs to work with a wide variety of sensors and data sources. To handle the diversity of data
from different sources, we extend a meta-data-model-based technique initially proposed in [5]. The
technique uses a data model to specify the format and data types of an input data set, e.g., temperature,
soil moisture reading, etc. A meta data model is a model of data models. It specifies permissible data
types for columns, and operation semantics associated with each data type. Operational semantics for
a specific data type specifies operations that can be performed on the data type. For example, an
operational semantic for temperature in
Fahrenheit may define how to translate
data to an intermediate format in
Celsius. To improve inter-operability,
we specify a data model in XML [6],
which is a prevailing data format used
to exchange structured data over
Internet. A meta data model is specified
in an extension of XML schema (XSD)
[7], referred to as XSD*. XSD* extends
XSD with operational semantics for a
data type. Figure 2 illustrates a meta-
data model in the proposed XSD*.
Elements of the model are extended
with their operational semantics (i.e.
‘op’). For example, element ‘time’ has
two children ‘date_seg’ and ‘date_single’, each representing a possible format of time. A time in the
‘data_seg’ further contains ‘year’, ‘month’, etc. The ‘op’ associated with ‘date_seq’ specifies an
algorithm translating a time in ‘date_seq’ to a unified internal representation accepted by decision
modules. For each data model, a data importer is generated to handle data sets defined by the data
model. The data importer will execute the operational semantics defined in the meta-data model, on an
input data set. This will translate the data set into an intermediate format accepted by decision modules.
To introduce a new type of data source (e.g. a new type of sensor), one only needs to define its data
model in XML. The DSAS will translate the XML data model to a data importer.

4. An extensive software architecture for decision modules

At core of a decision support system is its decision logic. In a traditional decision support system the

decision logic is hard-coded for a specific application. Nevertheless, each orchard operation is different,

and it is affected by many factors such as the orchard’s crop types, environment, and even business

model. We proposed an extensible and adaptive software architecture that enables a DSAS to be easily

extended with new decision logics. The software architecture follows the open/close principle, an im-

portant principle in object-oriented software design, i.e., a software shall be open for extension but close

for modification [8]. In the context of decision modules, it means that a system can be easily extended

DATA DATAFILE

0…

…

UID +

sensor_array +

time

movement +

pos +

…

date_seg

date_single

year

month

hour

sec

…

…
…

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP

OP

Figure 2: Meta data model in XSD*

with new decision modules with minimal change to its implementation. Following this principle, we de-

veloped an extensible software architecture for building highly customizable decision modules. Figure

3 shows a variety of reconfiguration mechanisms supported by the extensible software architecture,

including dataflow configuration, and value and block parameters.

The extensible software

architecture uses a data-

flow-driven design, giving

a user an intuitive way to

view and configure a deci-

sion logic. In the example

shown in Figure 3, a user

may re-route block ‘For-

casting’ to take inputs

from the AgWeatherNet

importer instead of the in-

field weather station im-

porter. This enables the

decision module to use

weather data from Ag-

WeatherNet, a network of

weather stations in WA

[9]. The data-flow-driven

design also enables be-

havior and structural hier-

archies (as shown in Fig-

ure 3). To reduce the overhead of building a new decision module from scratch, the software architec-

ture allows a user to replace only a portion of the logic as necessary, through value and block parame-

ters. For example, in Figure 3 parameter ‘crop_type’ is used to pass the crop type to the decision module

and it is passed down in the block hierarchy using a scoping rule.

5. Software-defined control: a software design paradigm for cloud-based control

Compared with existing DSSs, a distinctive feature of our cloud-based DSAS is its ability to control field

devices directly from the Cloud. Growers often deploy a variety of devices for different applications (e.g.,

irrigation, pest control). These devices come with their own proprietary control interfaces. A challenge

in cloud-based control automation is how to control a variety of field devices from the Cloud. To address

this challenge, we proposed software-defined control. Inspired by the concept of software-defined net-

work[10], software-defined control makes devices interoperable by wrapping them with a unified inter-

face defined by software. This will give a device maker a flexible (interface is defined by software, not

hardware) and non-intrusive (no modification of their device interfaces is necessary) way to make their

devices work with a DSAS. Software-defined control enables multi-stage software-enabled adaptation

from device-independent decisions to device-specific control signals. By separating design concerns,

software-defined control structures the adaptation in a three-layer architecture: 1) a decision plane syn-

thesizing device-independent decisions. These decisions specify required actions at a high level, e.g.,

a geographic distribution of irrigation volume; 2) a service plane translating a decision to schedules for

each device. A schedule reflects the configuration and layout of devices; and 3) the device plane exe-

cutes the schedules. Figure 4 illustrates software-defined control, using a 3-zone irrigation system as

an example. Each irrigation zone has its own controller (𝐷 𝑣𝑖𝑟𝑟𝑖 , 𝐷 𝑣𝑖𝑟𝑟𝑖1, and 𝐷 𝑣𝑖𝑟𝑟𝑖2, respectively)

controlling a set of valves. A decision made by the decision plane specifies a distribution of water vol-

ume in an orchard. The service plane translates the decision to irrigation schedules for each controller,

and finally the device plane, consisting of three controllers, use the schedules to control valves.

Soil sensor data
importer

Geo. Database
importer

In-field Weather
Station Importer

AgWeatherNet
Importer

Water Stress
Data Importer

Precipitation

Soil Database
importer

Temp.

Cond. Point

Plan Phys.
(PP) model

Evp. Calc.

Evp. model

Evaporation

Forcasting

WR model

Water Retention

WR Calc.

Irrigation
Scheduler

Irrigation
Schedule

Irrigation Decision ModuleData Importation
Module DIM

Value param: crop_type

IDM(crop_type, PP, WR)

Online Weather
Data Importer

Figure 3 Extensible dataflow-driven software architecture

Figure 4 Software-Defined Control: An Overview

Layers of abstraction deployed by software-defined control enable each layer to provide an abstract

view of the layer beneath through a well-defined interface. For instance, a service plane has a collection

of service applications (SAs). Each SA provides an abstraction of a service provided by field devices.

In the example in Figure 4, 𝑆𝐴𝑖𝑟𝑟𝑖 provides an abstract view of an irrigation system, abstracting away

details such as zoning and device types. This abstraction separates decision intelligence from devices

and enables the development of device-independent decision modules.

Software-defined control also enables constant feedback and monitoring at each layer of abstraction.

For example, the interface of a service plane allows a decision plane to discover SAs in the service

plane, to send decisions to the SAs, and also to receive runtime statistics from them. The interface of a

device plane enables two-way traffic in which the service plane can program field devices, and receive

feedback from these devices. This interface allows the decision plane to use feedback from devices to

adapt its own logics through its adaptive architecture.

6. System implementation

The initial version of Agrilaxy has been implemented in May 2014, which implemented device-agnostic

data acquisition front-end. The system was developed using Ruby. Ruby is a dynamic-type program-

ming language popular with web developers. Part of its popularity with web community is due to Rails,

a ruby library framework developed specifically for server-side web development[11]. We tested

Agrilaxy on Amazon’s cloud-based service AWS [12]. Currently we are working on a new version of

Agrilaxy, with emphases on implementing a cloud-based control automation backend and adaptive de-

cision modules.

7. Conclusions

Cloud computing is becoming a mainstream choice for hosting web-based information systems. Cloud

computing provides a scalable and highly available computing platform with on-demand resource allo-

cation. It helps address challenges faced by a web-based agricultural decision support system. To take

advantage of cloud computing, as well as to close the control loop in precision agriculture, we propose

a new design framework for cloud-based Decision Support and Automation systems. The framework-

features a device-agnostic data importation frontend, an extensible software architecture for decision

modules, and cloud-based control automation using software-design control. The device-agnostic

frontend supports input data set from different data sources; the extensible software architecture ena-

bles a DSAS to be extended for different decision applications; cloud-based automation closes the

decision loop, from sensor inputs, to decision making, to control signals to a diversified profile of field

devices. We implemented an initial version of our framework using Ruby on Rails, and tested it on

Amazon cloud services (AWS).

D
ec

is
io

n

P
la

n
e

Se
rv

ic
e

P
la

n
e

D
ev

ic
e

P
la

n
e

SAirri SAfert SApest
…

Devap1

Devap0Devirr1

Devirri0 Devirri2

DM0 DMm…
Decision Modules

Service Apps

Devices

References

[1] United States Department of Agriculture, “Specialty Crop Research Initiative.” [Online]. Available:

http://nifa.usda.gov/sites/default/files/resources/SCRI Self-Study document.pdf. [Accessed: 14-

Jun-2015].

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,” 2011.

[3] C. Li and L. Y. Li, “Optimal Resource Provisioning for Cloud Computing Environment,” J.

Supercomput., vol. 62, no. 2, pp. 989–1022, 2012.

[4] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp.

1645–1660, Sep. 2013.

[5] L. Tan, R. Haley, and R. Wortman, “An Extensible and Integrated Software Architecture for Data

Analysis and Visualization in Precision Agriculture,” in the proceedings of IEEE Internation

Conference on Information Reuse and Integration (IRI’09), 2009.

[6] W3C Working Group, “RDF 1.1 XML Syntax,” W3C Recommendation. 2014.

[7] W. C. W. D. December, “W3C XML Schema Definition Language (XSD),” Language (Baltim).,

2009.

[8] B. Meyer, “Tell less, say more: the power of implicitness,” Computer (Long. Beach. Calif)., vol.

31, no. 7, pp. 97–98, Jul. 1998.

[9] Washington State University, “AgWeatherNet,” 2015. [Online]. Available:

http://weather.wsu.edu/awn.php.

[10] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-Defined Networking: A Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–

76, Jan. 2015.

[11] “Ruby on Rails.” [Online]. Available: http://rubyonrails.org/. [Accessed: 15-Jul-2015].

[12] Amazon, “Amazon Web Services,” 2016. [Online]. Available: http://aws.amazon.com. [Accessed:

03-Jan-2016].

