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Abstract: 

Recent technological and commercial developments make cloud computing an affordable, scalable, 
and highly-available platform technology. Meanwhile, precision agriculture is showing its potentials by 
improving agricultural operations through better data-driven decision making. Nevertheless, further 
development of precision agriculture requires better technology and tools to process data efficiently at 
a reasonable cost, and to translate the data to better decisions and actions in a field. We developed a 
framework for cloud-based Decision Support and Automation systems that can acquire data from 
various sources, synthesize application-specific decisions, and control field devices from the Cloud. A 
distinctive feature of our framework is its extensible software architecture: decision modules can be 
added and/or configured for a specific operation. The platform features a device-agnostic frontend that 
can process incoming data in different formats and semantics. Finally, the platform incorporates 
software-defined control, a new software design paradigm we proposed to enable versatile and safe 
control of field devices from a cloud computing platform. An early version of the system has been 
developed and tested with support from the USDA.  
 
Key words: cloud computing, decision support and automation, precision agriculture, software-defined 
control.  
 

1. Introduction 
 
Precision agriculture is a site-specific farming practice that uses technologies to measure and respond 
to inter and intra-field variability in crops. It has been seen as a critical tool for increasing agricultural 
productivity while preserving natural resources. The “brain” of precision agriculture is a decision support 
system (DSS) that helps a grower process and respond to intra- and inter-field data. With recent 
technological advances, particularly sensors technology and online data services, agriculture is 
increasingly becoming a data-rich operation. Particularly specialty crop industry in US is going through 
a transformation through the use of information technology. By the USDA definition, specialty crops are 
“fruits and vegetables, tree nuts, dried fruits, horticulture, and nursery crops (including floriculture).” 
Specialty crops are responsible for half of the gate value of US agricultural output [1]. Compared with 
commodity crops, special crops are more site-specific and labor-intensive. It is sensitive to variation in 
field, labor situation, and many other factors. Whereas many agriculture operations can use a decision 
support system, specialty crops particularly may benefit from a better decision support system, as a 
majority of orchards today still follow a traditional human-centric decision process. 
 
Developing a better decision support system for specialty-crop industry presents some specific 
challenges in information technology. Specialty-crop operations are highly seasonal. Requests for 
decision support can fluctuate drastically on- and off-seasons. One challenge is how to meet the 
fluctuating demands while still providing highly available services. Moreover, each orchard has its own 
unique operation characteristic. Another challenge is how to develop a decision support system that 
can be reconfigured for a specific operation. Finally, a precision agriculture operation is a close-loop 
control system, with inputs (e.g. sensors and other data sources) from a field and feedbacks (e.g. field 
actions) to the field. A traditional decision support system emphasizes only on the first part of the control 
loop, that is, taking inputs and synthesizing decisions. A grand challenge is how to close the control 
loop by controlling field devices safely with optimized decisions.  
 
According to the official NIST definition, cloud computing is "a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of configurable computing resources (e.g., networks, 
servers, storage, applications and services) that can be rapidly provisioned and released with minimal 
management effort or service provider interaction."[2].  Cloud computing is inspired by a utility delivery 



 

 

model: computing powers may be delivered on demand just like electricity or gas, in an effort to meet 
demands for scalable, highly-available, and economical Internet-connected computing resources. A 
cloud computing service enables users to request and release resources on demand, and to pay for 
only what has been used. By pooling resources together, a cloud computing service generally has a 
higher availability than traditional user-operated server networks.  
 
Cloud computing is particularly beneficial for decision support in precision agriculture for specialty crops. 
First, precision agriculture in an orchard is a data-rich operation. A decision support system needs to 
handle a large volume of data from sensors and other sources. Cloud computing provides scalability 
necessary for handling these data in real time. Second, the demand for decision support fluctuates 
greatly on- and off-seasons. Through resource provisioning [3], cloud computing can change quickly 
the number of server instances and other resources, based on the demand. Finally, agriculture decision 
support systems are increasingly hosted on Internet, to take advantage of internet-connected devices 
(Internet of things[4]) and to build an online community. A cloud service provider handles the complexity 
of running hardware and maintaining middleware for enhanced availability and security. This leaves 
developers to focusing on the logics of a web-based decision support system.  
 
Moving towards cloud-based decision support presents opportunities as well as new challenges. First, 
precision agriculture uses a variety of sensors and data sources, each of which may have its own data 
format and semantics. A cloud-based decision support system needs to handle a diversified profile of 
data types and formats; second, traditionally a decision support system is application-specific. A farmer 
may need to access different systems for a specific application (e.g. irrigation, fertilization, etc). To 
provide a streamlined user experience, a cloud-based decision support system shall be able to be 
extended and configured for different applications; and finally, recent development of Internet of Things 
(IoT) links field devices through Internet. To capitalize the progress in IoT, a future decision support 
system is expected to control field device safely from the cloud. 
 
In this paper we discuss our framework for cloud-based decision support and automation systems 
(DSAS), and our experience of implementing it in Agrilaxy, a DSAS we developed from ground up to 
take advantage of the scalability and availability of a cloud computing platform. We developed new 
techniques to address the design challenges faced by a cloud-based DSAS. The rest of the paper will 
be organized as follows: Section 2 gives an overview of our framework. In Section 3 we discuss its 
device-agnostic data importation frontend, which works with different data sources with custom-defined 
data format and semantics. In Section 4 we discuss its extensible software architecture for decision 
modules. In Section 5 we introduce Software-Defined Control paradigm, a new software design 
paradigm for controlling physical devices in a field from the cloud.  Section 6 discusses the current 
implementation of Agrilaxy, Finally, Section 7 concludes this paper.   
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Figure 1 Cloud-based decision support & automation system: an overview 



 

 

2. System overview 
 
Figure 1 shows the overview of our framework for cloud-based DSASs. It has a device-agnostic data 

importation frontend. The front end uses data models to define the formats and semantics of input data 

sets. The details of a data model are given in Section 2. Its decision modules are developed with an 

extensible software architecture, featuring a hierarchical modular design. A module, referred to as a 

web app in the DSAS, is characterized by its interfaces. A new web app can be added to decision 

module hierarchy on-the-fly, or used to replace an existing module with a compatible interface. The 

details of our extensible software architecture are introduced in Section 3. In Section 4, we introduce 

Software-Defined Control, a new software design paradigm for managing the complexity of controlling 

a diversified profile of devices. Software-defined control virtualizes physical devices through layers of 

abstraction. Each layer abstracts the implementation details of the layer underneath, while providing a 

uniform control interface to the layer above.  

3. Device-agnostic data importation  
 

Precision agriculture is characterized by the use of different sensors (e.g. soil moisture sensor, nitrogen 
sensor) and data sources (e.g. weather site) to measure intra- and inter-field variability. A cloud-based 
DSAS needs to work with a wide variety of sensors and data sources. To handle the diversity of data 
from different sources, we extend a meta-data-model-based technique initially proposed in [5]. The 
technique uses a data model to specify the format and data types of an input data set, e.g., temperature, 
soil moisture reading, etc. A meta data model is a model of data models. It specifies permissible data 
types for columns, and operation semantics associated with each data type. Operational semantics for 
a specific data type specifies operations that can be performed on the data type.  For example, an 
operational semantic for temperature in 
Fahrenheit may define how to translate 
data to an intermediate format in 
Celsius. To improve inter-operability, 
we specify a data model in XML [6], 
which is a prevailing data format used 
to exchange structured data over 
Internet. A meta data model is specified 
in an extension of XML schema (XSD) 
[7], referred to as XSD*. XSD* extends 
XSD with operational semantics for a 
data type. Figure 2 illustrates a meta-
data model in the proposed XSD*. 
Elements of the model are extended 
with their operational semantics (i.e. 
‘op’). For example, element ‘time’ has 
two children ‘date_seg’ and ‘date_single’, each representing a possible format of time. A time in the 
‘data_seg’ further contains ‘year’, ‘month’, etc. The ‘op’ associated with ‘date_seq’ specifies an 
algorithm translating a time in ‘date_seq’ to a unified internal representation accepted by decision 
modules. For each data model, a data importer is generated to handle data sets defined by the data 
model. The data importer will execute the operational semantics defined in the meta-data model, on an 
input data set. This will translate the data set into an intermediate format accepted by decision modules.  
To introduce a new type of data source (e.g. a new type of sensor), one only needs to define its data 
model in XML. The DSAS will translate the XML data model to a data importer. 
 

4.  An extensive software architecture for decision modules 
 
At core of a decision support system is its decision logic. In a traditional decision support system the 

decision logic is hard-coded for a specific application. Nevertheless, each orchard operation is different, 

and it is affected by many factors such as the orchard’s crop types, environment, and even business 

model. We proposed an extensible and adaptive software architecture that enables a DSAS to be easily 

extended with new decision logics.  The software architecture follows the open/close principle, an im-

portant principle in object-oriented software design, i.e., a software shall be open for extension but close 

for modification [8]. In the context of decision modules, it means that a system can be easily extended 
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with new decision modules with minimal change to its implementation. Following this principle, we de-

veloped an extensible software architecture for building highly customizable decision modules. Figure 

3 shows a variety of reconfiguration mechanisms supported by the extensible software architecture, 

including dataflow configuration, and value and block parameters.  

The extensible software 

architecture uses a data-

flow-driven design, giving 

a user an intuitive way to 

view and configure a deci-

sion logic. In the example 

shown in Figure 3, a user 

may re-route block ‘For-

casting’ to take inputs 

from the AgWeatherNet 

importer instead of the in-

field weather station im-

porter. This enables the 

decision module to use 

weather data from Ag-

WeatherNet, a network of 

weather stations in WA 

[9]. The data-flow-driven 

design also enables be-

havior and structural hier-

archies (as shown in Fig-

ure 3). To reduce the overhead of building a new decision module from scratch, the software architec-

ture allows a user to replace only a portion of the logic as necessary, through value and block parame-

ters. For example, in Figure 3 parameter ‘crop_type’ is used to pass the crop type to the decision module 

and it is passed down in the block hierarchy using a scoping rule.  

 

5. Software-defined control: a software design paradigm for cloud-based control  
 

Compared with existing DSSs, a distinctive feature of our cloud-based DSAS is its ability to control field 

devices directly from the Cloud. Growers often deploy a variety of devices for different applications (e.g., 

irrigation, pest control). These devices come with their own proprietary control interfaces. A challenge 

in cloud-based control automation is how to control a variety of field devices from the Cloud. To address 

this challenge, we proposed software-defined control. Inspired by the concept of software-defined net-

work[10], software-defined control makes devices interoperable by wrapping them with a unified inter-

face defined by software. This will give a device maker a flexible (interface is defined by software, not 

hardware) and non-intrusive (no modification of their device interfaces is necessary) way to make their 

devices work with a DSAS. Software-defined control enables multi-stage software-enabled adaptation 

from device-independent decisions to device-specific control signals. By separating design concerns, 

software-defined control structures the adaptation in a three-layer architecture: 1) a decision plane syn-

thesizing device-independent decisions. These decisions specify required actions at a high level, e.g., 

a geographic distribution of irrigation volume; 2) a service plane translating a decision to schedules for 

each device. A schedule reflects the configuration and layout of devices; and 3) the device plane exe-

cutes the schedules. Figure 4 illustrates software-defined control, using a 3-zone irrigation system as 

an example. Each irrigation zone has its own controller (𝐷 𝑣𝑖𝑟𝑟𝑖 , 𝐷 𝑣𝑖𝑟𝑟𝑖1, and 𝐷 𝑣𝑖𝑟𝑟𝑖2, respectively) 

controlling a set of valves. A decision made by the decision plane specifies a distribution of water vol-

ume in an orchard. The service plane translates the decision to irrigation schedules for each controller, 

and finally the device plane, consisting of three controllers, use the schedules to control valves.       
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Figure 4 Software-Defined Control: An Overview 

Layers of abstraction deployed by software-defined control enable each layer to provide an abstract 

view of the layer beneath through a well-defined interface. For instance, a service plane has a collection 

of service applications (SAs). Each SA provides an abstraction of a service provided by field devices. 

In the example in Figure 4, 𝑆𝐴𝑖𝑟𝑟𝑖  provides an abstract view of an irrigation system, abstracting away 

details such as zoning and device types. This abstraction separates decision intelligence from devices 

and enables the development of device-independent decision modules.    

Software-defined control also enables constant feedback and monitoring at each layer of abstraction. 

For example, the interface of a service plane allows a decision plane to discover SAs in the service 

plane, to send decisions to the SAs, and also to receive runtime statistics from them. The interface of a 

device plane enables two-way traffic in which the service plane can program field devices, and receive 

feedback from these devices. This interface allows the decision plane to use feedback from devices to 

adapt its own logics through its adaptive architecture. 

6. System implementation 

The initial version of Agrilaxy has been implemented in May 2014, which implemented device-agnostic 

data acquisition front-end. The system was developed using Ruby. Ruby is a dynamic-type program-

ming language popular with web developers. Part of its popularity with web community is due to Rails, 

a ruby library framework developed specifically for server-side web development[11]. We tested 

Agrilaxy on Amazon’s cloud-based service AWS [12]. Currently we are working on a new version of 

Agrilaxy, with emphases on implementing a cloud-based control automation backend and adaptive de-

cision modules.      

7. Conclusions 

Cloud computing is becoming a mainstream choice for hosting web-based information systems. Cloud 

computing provides a scalable and highly available computing platform with on-demand resource allo-

cation. It helps address challenges faced by a web-based agricultural decision support system. To take 

advantage of cloud computing, as well as to close the control loop in precision agriculture, we propose 

a new design framework for cloud-based Decision Support and Automation systems. The framework-

features a device-agnostic data importation frontend, an extensible software architecture for decision 

modules, and cloud-based control automation using software-design control. The device-agnostic 

frontend supports input data set from different data sources; the extensible software architecture ena-

bles a DSAS to be extended for different decision applications; cloud-based automation closes the 

decision loop, from sensor inputs, to decision making, to control signals to a diversified profile of field 

devices. We implemented an initial version of our framework using Ruby on Rails, and tested it on 

Amazon cloud services (AWS).    
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