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Abstract. This paper shows that different “meta-model-checking” anal-
yses can be conducted efficiently on a generic data structure we call a
support set. Support sets may be viewed as abstract encodings of the “ev-
idence” a model checker uses to justify the yes/no answers it computes.
We indicate how model checkers may be modified to compute supports
sets without compromising their time or space complexity. We also show
how support sets may be used for a variety of different analyses of model-
checking results, including: the generation of diagnostic information for
explaining negative model-checking results; and certifying the results of
model checking (is the evidence internally consistent?).

Ke y words: Model checking; diagnostic information; mu-calculus; tem-
poral logic

1 Introduction

Temporal-logic model checking [CE81, QS82, CES86] refers to an array of tech-
niques for automatically determining whether or not a system satisfies a prop-
erty expressed in some temporal logic. Traditionally, model checkers have been
viewed as decision procedures that return yes/no answers reflecting the “cor-
rectness” of the system being analyzed. However, researchers have also realized
that the information collected by model checkers in order to compute their an-
swers can also be of great interest to the users of model checkers. Diagnostic
information [CGMZ95, Sti95] explaining answers to users represents one use
of such information; others include coverage analysis [CKV01], vacuity check-
ing [BBDER97] (is (part of) a formula “trivially true”, and hence probably
erroneous?), and result certification [Nam01] (does the evidence collected indeed
support the conclusion returned, i.e. can the model checker be trusted?).

Existing “meta-model-checking” research is generally model-checker depen-
dent: routines utilize algorithm-specific information computed during model-
checking and hence are tightly bound to the infrastructure of checkers being
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used. In this paper we propose a generic framework for the analysis of model-
checking results that uses a uniform encoding of the evidence collected by a
model checker as it executes. In particular, we show how this evidence may be
abstractly encoded in a special data structure, called a support set, that existing
model checkers may be easily modified to generate. We then illustrate how sup-
port sets can be used to support different analyses of model-checking results in a
model-checker independent fashion. Using our results, builders of model-checking
tools can factor out diagnostic-information generation, or justification genera-
tion, or coverage analysis, from their model checkers and into special support-set
analyzers computing the answers in question. The result is uncluttered model-
checking code and an extensible implementation in which different support-set-
based “meta-model-checking” analyzers may be added without modifying the
underlying model-checking engine.

The rest of paper is organized as follows. Section 2 contains mathematical
preliminaries, while Section 3 defines support sets. The section following illus-
trates how model checkers may be altered to compute support sets efficiently.
The next few sections show how support sets may be used in support of differ-
ent “meta-model-checking” analyses. Section 7 concludes and discusses related
work.

2 Preliminaries

This section defines the system models and temporal logics used in the rest of
the paper. In the remainder of the report we fix a set A of atomic propositions.

2.1 Kripke Structures and CTL∗

Definition 1. A Kripke structure is a tuple 〈S, sI ,→, V 〉, with S the set of
states, sI ∈ S the start state, →⊆ S × S is transition relation and V : A → 2S

the valuation.

A Kripke structure encodes a system’s operational behavior, with S being the
possible set of system states and → the (atomic) state transitions. For atomic
proposition A ∈ A, V (A) indicates in which states A is true. We usually write
s→ s′ in lieu of 〈s, s′〉 ∈→.

Given Kripke structure 〈S, sI ,→, V 〉, a path from s ∈ S is a maximal sequence
σ = s0s1 . . . where s = s0 and si → si+1 for all i < |σ|. (Here |σ| = n if
σ = s0s1 . . . sn and ∞ if σ is infinite.) We use σ[i] for si and σ(i) for sisi+1 . . . if
i ≤ |σ|.

CTL∗. Formulas in the logic CTL∗ are given via the following grammar, where
A ∈ A.

φ ::= A | ¬A | φ ∧ φ | φ ∨ φ | A ψ | E ψ
ψ ::= φ | ψ ∧ ψ | ψ ∨ ψ | X ψ | ψ U ψ | ψ R ψ

We refer to the formulas generated from φ as state formulas and those from ψ as
path formulas. The CTL∗ formulas consist of the state formulas. We call A and
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E path quantifiers and the X, U, R path modalities. The sublogic CTL consists of
those CTL∗ formulas in which every path modality is immediately preceded by
a path quantifier.

CTL∗ formulas are interpreted with respect to Kripke structures T = 〈S, sI ,
→, V 〉 where → is total : for every s ∈ S there exists s′ ∈ S with s → s′. Given
such a T , the semantics of CTL∗ formulas is given via a relation |=T associating
states s in T to state formulas and paths σ in T to path formulas and which is
defined below.

1. s |=T A(¬A) iff s ∈ V (A) (s �∈ V (A)).
2. s |=T φ1 ∧ φ2 (φ1 ∨ φ2) iff s |=T φ1 and (or) s |=T φ2.
3. s |=T Aψ (Eψ) iff for every (some) path σ from s, σ |=T ψ.
4. σ |=T φ, where φ is a state formula, iff σ[0] |= φ.
5. σ |=T ψ1 ∧ ψ2 (ψ1 ∨ ψ2) iff σ |=T ψ1 and (or) σ |=T ψ2.
6. σ |=T Xψ iff σ(1) |= φ.
7. σ |=T ψ1Uψ2 iff for some i ≥ 0, σ(i) |= ψ2 and σ(j) |= ψ1 for all j < i.
8. σ |=T ψ1Rψ2 iff for all i ≥ 0 σ(i) |= ψ2 or σ(j) |= ψ1 some j < i.

The release modality R is the dual of the until operator U. Intuitively, ψ1Rψ2

holds of a path if ψ2 is kept true until “released” from this obligation by the
truth of ψ1.

2.2 The Modal Mu-Calculus and Boolean Equation Systems

We define the modal mu-calculus and boolean equation systems by first giving
a general account of fixpoint equation systems over complete lattices [Mad97].

Lattices and Environments A complete lattice is a partially ordered set
〈Q,�〉 with the following property: every subset Q′ ⊆ Q has a least upper bound⊔
Q′ in Q. It can be shown that arbitrary upper bounds

�
Q also exist and

that any complete lattice has a unique least element ⊥ and maximum element
�. In addition, the Tarski-Knaster theorem guarantees the existence of unique
least and greatest fixpoints for any monotonic function f : Q → Q. Given
monotonic f , we write µf ∈ Q for the least “solution” to f(x) = x and νf ∈ Q
for the greatest. These fixpoints are characterized as follows.

µf =
⊔
{q ∈ Q | f(q) � q} νf =

�
{q ∈ Q | q � f(q)}

Let 〈Q,�〉 be a complete lattice and X be a finite set of variables. Then an
environment over X is a function from X to Q. We use QX to represent the set of
all environments over X . Environments constitute a complete lattice under the
pointwise extension of � to QX : θ � θ′ if and only if for allX ∈ X , θ(X) � θ′(X).

If θ ∈ QX and X ′ ⊆ X , then θ|X ′ ∈ QX ′
is defined by (θ|X ′)(X) = θ(X) for

all X ∈ X ′. If θ′ ∈ QX ′
then θ[θ′] denotes the environment obtained by updating

θ by θ′:

θ[θ′] =
{
θ′(X) if X ∈ X ′

θ(X) otherwise
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Fixpoint Equation Systems We now develop a general framework for systems
of equations over a complete lattice. Throughout the remainder of this subsection
we fix a complete lattice 〈Q,�〉 and a finite set X of variables.

Syntax An equation block B is a set of equations {X1 = f1, . . . , Xl = fl}, where
the fi are monotonic functions in QX → Q, {X1, . . .Xl} ⊆ X , and the Xi are
distinct. We use lhs(B) = {X1, . . . , Xl} for the left-hand side variables of B,
and rhs(B,Xi) = fi for the right-hand side for Xi in B, respectively. The fi are
often represented syntactically as expressions involving free occurrences of the
variables from X . In this case, we use vars(fi) to refer to the set of variables
occurring freely in fi, and we define vars(B) = lhs(B) ∪

⋃l
i=1 vars(fi) as the

variables in equation block B. We refer to the variables in lhs(B) as bound and
the variables in vars(B)− lhs(B) as free.

A parity block E has form 〈σ,B〉, where σ ∈ {µ, ν} is a parity indicator and B
is an equation block. We lift the notions lhs , rhs , vars , free variable, and bound
variable to parity blocks in the straightforward manner.

A fixpoint equation system is a nonempty sequence E = E1 . . . Em of parity
blocks whose left-hand sides are pairwise disjoint. If E ′ is an equation system
and E is a parity block whose left-hand side variables are disjoint from those in
E ′ then we write E :: E ′ for the equation system obtained by adding E to the
front of E ′. We use E(k) = EkEk+1 · · · to refer to the subsequence of E starting
from k-th parity block. The operations lhs , rhs , vars, etc., are generalized in
the straightforward manner. We call E closed if every X ∈ vars(E) is bound, i.e.
an element of lhs(E). We also define hE(X) = k when X ∈ lhs(Ek) and refer
to hE(X) as the depth of X in E . We write h(X) when E is clear from context.
We say Xi is shallower or higher than Xj if h(Xi) < h(Xj), and deeper (or
lower) if h(Xi) > h(Xj). If X is a left-hand side variable in E we define σE(X)
to be the parity of the unique parity block E in E such that X ∈ lhs(E). We
omit reference to E and write σ(X) when E is clear from context.

In a fixpoint equation system E , we say that Xi syntactically depends on Xj ,

written as Xi ✁ Xj , if Xj ∈ vars(rhs(Xi)). We write
∗
✁ for the transitive and

reflexive closure of ✁; so Xi

∗
✁ Xj if there is a path of syntactic dependencies

from Xi to Xj .

Semantics Let θ ∈ QX be an environment; then a single block B = {X1 =
f1, . . . , Xl = fl}, where X ′ = {X1, . . . , Xl}, may be seen as inducing a func-
tion fB,θ : QX ′ → QX ′

mapping environments over X ′ to environments over X ′

as follows.
fB,θ(θ′) = (X1 �→ f1(θ[θ′])) · · · [Xl �→ fl(θ[θ′])]

That is, fB,θ(θ′) returns an environment over X ′ in which each Xi is mapped to
the result of evaluating fi on environment θ[θ′]. Note that in θ[θ′] θ′ “overwrites”
the values for the Xi in θ. Consequently, θ may be seen as providing values only
for variables that are not in X ′. It follows from the monotonicity of the fj that for
any θ, fB,θ is a monotonic function overQX ′

, and consquently, least and greatest
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fixpoints, µfB,θ and νfB,θ, which are environments over X ′, exist. Given θ ∈ QX ,
we then define the semantics of a parity block in terms of these fixed points:
[[〈σ,B〉]]θ = σfB,θ. So [[〈σ,B〉]] maps environments over X to environments over
lhs(B).

Fixpoint equation systems are now interpreted as follows. For an environment
θ ∈ QX and equation system E with lhs(E) = XE ⊆ X we define a function fE,θ

that maps environments in QXE to environments in QXE . We then use an ap-
propriate fixpoint of this function to arrive at the meaning of E . We define fE,θ

by induction on the structure of E . When E = 〈σ,B〉 (i.e. E contains one block),
then we take fE,θ = fB,θ. In this case fE,θ is clearly monotonic, and we define
[[E ]]θ = [[〈σ,B〉]]θ. When E = 〈σ,B〉 :: E ′ contains two or more blocks, fE,θ is
defined as

fE,θ(θ′) = ([[E ′]](θ[θ′]))[fB,θ[[[E′]](θ[θ′])](θ′|XB)],

where XB = lhs(B). This expression may be understood via its subexpressions.

[[E ′]](θ[θ′]) is the environment defined by E ′ in environment θ updated with
bindings in θ′. This environment assigns a “fixpoint value” to every left-
hand variable in E ′.

fB,θ[[[E′]](θ[θ′])] is the function on environments defined by block B and the en-
vironment obtained by updating θ with the bindings in E ′.

θ′|XB is the subenvironment of θ′ obtained by restricting variables to those
that appear as left-hand sides in B.

It is easy to show that fE,θ(θ′) is monotonic over the lattice QXE and hence has
unique least and greatest fixpoints. We then define [[E ]]θ as: [[〈σ,B〉 :: E ′]]θ =
σf〈σ,B〉::E′,θ.

If E is closed then for any θ, θ′ we have that [[E ]]θ = [[E ]]θ′. In this case we
often omit reference to θ and write [[θ]] for this (unique) environment.

We conclude this general treatment of fixpoint equation systems with a the
definition of alternation depth. Here we adopt the convention that max∅ = 0.

Definition 2. Let E = E1E2 · · ·Em be an equation system and X a left-hand
side variable in E. Then the alternation depth, ad(X) of X is given as:

ad(X) = 1 +max{ad(X ′) | σ(X) �= σ(X ′), h(X ′) < h(X), X
∗
✁ X ′ ∗

✁ X}

The Modal Mu-Calculus In this paper we define modal mu-calculus formulas
using fixpoint equation systems whose right-hand sides are formulas built as
follows.

f = A | ¬A |
∧
X ′ |

∨
X ′ | 〈〉X | []X

Here A ∈ A and X ′ ⊆ X . The lattice 〈Q,�〉 used to interpret variables is given
by fixing a Kripke structure T = 〈S, sI ,→, V 〉 and taking Q = 2S and �= ⊆. We
adopt the usual semantics of modal formulas given below; note that θ ∈ (2S)X
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maps variables to sets of states in T . For any f , [[f ]]T is a monotonic function
from (2S)X to 2S .

[[A]]T θ = V (A) [[¬A]]T θ = S − V (A)
[[
∨
X ′]]T θ =

⋃
{θ(X) |X ∈ X ′} [[

∧
X ′]]T θ =

⋂
{θ(X) |X ∈ X ′}

[[〈〉X ]]T θ = {s | ∃s→ s′. s′ ∈ θ(X)} [[[]X ]]T θ = {s | ∀s→ s′. s′ ∈ θ(X)}

Mu-calculus fixpoint equation systems in essence define a collection of for-
mulas, one for each X ∈ lhs(E). This notation is clumsy for users, but more
user-friendly logics such as CTL, LTL and CTL∗ may be translated efficiently
into it [Dam94, BC96b].

Boolean Equation Systems Boolean equation systems are fixpoint equation
systems defined over the boolean lattice 〈{0,1},�〉, where 0 and 1 are the
boolean values “false” and “true”, respectively, and 0 � 1. In this setting envi-
ronments may be viewed as characteristic functions of subsets of X , so we use set
operators ∪, ∩, and − on such environments. The right-hand sides of equations
are the formulas given by the following, where X ′ ⊆ X .

f :=
∨
X ′ |

∧
X ′

We often write tt for
∧
∅ and ff for

∨
∅. The definition of [[f ]]θ is standard:

[[
∨
X ′]]θ = 1 iff X ′ ∩ θ �= ∅, and [[

∧
X ′]]θ = 1 iff X ′ ⊆ θ.

Boolean equation systems may be derived from mu-calculus equation systems
and Kripke structures. Intuitively, this is done by assigning a boolean variable
to each state / mu-calculus variable pair; the boolean variable is intended to
indicate whether or not the state is in the set of states associated with the mu-
calculus variable. The resulting boolean equation system has alternation depth
no greater than the mu-calculus equation system from which it is derived.

3 Support Sets

When a model-checking problem is encoded as a boolean equation system, the
goal is typically to determine the value of a single distinguished variable (“does
the start state satisfy the formula?”). A support set stores the evidence for such a
variable’s value as an abstract “proof” recording how values of variables depend
on values of other variables.

Definition 3 (Support Set). Let E = E1 . . . Em be a closed boolean equation
system with X = lhs(B), let X ∈ X , and let r ∈ {0,1}. Then a support set
for r and X is a triple Γ = 〈r,X,Ξ〉, where Ξ : X → 2X is a partial function
such that Ξ(X) is defined and such that the following properties hold for each Xi

where Ξ(Xi) is defined (Xi
Γ
→ Xj if (Ξ(Xi))(Xj) = r).

I.(Direct Inference) [[fi]](Ξ(Xi)) = r
II.(Inclusion) If Xi

Γ
→ Xj, then Ξ(Xj) is defined.
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III.(Circularity Restriction) If there exists a loop ρ ≡ Xp1 Γ
→ . . .

Γ
→ Xp1

and Xi is the shallowest variable on ρ, then (r = 1 ⇒ σi = ν) ∧ (r = 0 ⇒
σi = µ).

If Γ = 〈r,X,Ξ〉 then we call r the support value and X the support variable
of Γ .

Support sets may be understood as follows. Recall that environments over
the boolean lattice are isomorphic to sets of variables. Thus Ξ may be seen
as associating an environment to each variable Xi on which it is defined. The
existence of an edge Xi Γ

→ Xj indicates a dependency of the value of Xi on Xj .
Thus Condition I asserts that if Ξ(Xi) is defined then under the interpretation
Ξ(Xi) of its variables, fi evaluates to r, the boolean result of the support set.
Condition II requires all variables on which Xi depends to be in the domain of
Ξ. The last condition imposes restrictions on cyclic dependencies: the parity of
the “shallowest” variable on the cycle must be consistent with r.

We may define an environment g(Γ ) for Γ = 〈r,X,Ξ〉 as follows.

(g(Γ ))(Xi) =
{
r if Ξ(Xi) is defined
r̄ otherwise

Theorem 1 states that the environment defined by a support set constitues a
partial model of E in the following sense: if r = 1 then g(Γ ) ⊆ [[E ]], and if r = 0
then g(Γ ) ∩ [[E ]] = ∅. Since Ξ(X) is always defined, it follows that [[E ]](X) = r.

Theorem 1. Let E be a closed boolean equation system with X ∈ lhs(E) and a
support set Γ = 〈r,X,Ξ〉. Then g(Γ ) is a partial model for E.

The next theorem guarantees the existence of support sets.

Theorem 2. Given closed boolean equation system E and X ∈ lhs(E), let r =
[E ](X). Then there exists a support set for E with support value r and support
variable X.

Support Sets for Temporal Logics The previous definition introduces support
sets in the context of boolean equation systems. At their lowest level many
model checkers may be seen to manipulate such equation systems. However,
conveying support-set-based information to users of model checkers requires the
translation of boolean variables into user-level notations. The remainder of this
section sketches how this can be done.

Users of model checkers typically input a (representation of) a Kripke struc-
ture and a formula in a temporal logic; the boolean variables used by the model
checker represent assertions about whether or not a given state in the Kripke
structure satisfies a given temporal formula derived from the formula input by
the user. A decorated support set includes functions for extracting this informa-
tion from boolean variables.

Definition 4. Let T = 〈S, sI ,→, V 〉 be a Kripke structure, φ be a formula
in a temporal logic Φ (i.e. Φ is the set of formulas) with satisfaction relation
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|=T⊆ S × Φ. Also let E be a boolean equation system with X = lhs(E). Then
〈Γ, πT , πΦ〉 is a decorated support set if Γ = 〈r,X,Ξ〉 is a support set over X
and πT : X → S, πΦ : X → Φ satisfy the following for all Xi such that Ξ(Xi) is
defined.

1. πS(X) = sI and πΦ(X) = φ.
2. If Ξ(Xi) is defined then πS(Xi) |=T πΦ(Xi) iff r = 1.
3. If Xj ∈ Ξ(Xi) then either πT (Xi) = πT (Xj) or πT (Xi)→ πT (Xj).

In a decorated support set, πT and πΦ extract state and temporal-formula infor-
mation from the boolean variables in Γ . Condition 1 requires that the support
variable of Γ be mapped to the start state of T and the initial formula φ, while
Condition 2 stipulates that the value returned in Γ respect the semantics of the
temporal logic. Condition 3 requires dependencies among boolean variables to
“respect” T ’s transition relation.

4 Extracting Support Sets

As a generic vehicle for conveying model-checker reasoning, support sets are only
useful to the extent that existing model checkers can be modified to compute
them. In this section we show how this may be done by presenting an extended
example.

We begin by noting that for explicit-state mu-calculus model checkers,
whether global [And94, CS93, EL86] or local [And94, BC96a, LRS98], the ex-
traction of support sets is straightforward, since such procedures typically work
by implicity or explicitly converting a mu-calculus model-checking problem into
a boolean equation system as described in Section 2. For reasons of space we do
not consider these further. Instead, in the remainder of this section we show how
an automaton-based algorithm for CTL∗ may be modified to construct support
sets [KVW00]. This algorithm is not obviously mu-calculus-related; nevertheless,
support-set information may be extracted without damaging the time or space
complexity of the procedure.

In automaton-based model checking for CTL∗, formulas are converted into
tree automata accepting the trees that make the formula true. Checking whether
a Kripke structure satisfies a formula involves determining whether or not the
(infinite) tree obtained by unwinding the Kripke structure is accepted by the for-
mula’s tree automaton. This acceptance check is typically performed by viewing
the Kripke structure itself as a tree automaton accepting the (single) tree ob-
tained by the unwinding process just mentioned, computing a product with it
and the automaton for the formula in question, and then checking whether or
not the resulting product automaton is nonempty.

The automaton-based model checker considered below comes from [KVW00],
although for technical convenience the definitions of the automata used borrow
ideas from [BCG01] as well. Recall that A is the (fixed) set of atomic proposi-
tions.
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Definition 5.
1. An alternating tableau transition system is a tuple 〈Q,→, qI , &〉, where Q is

a finite set of states, →⊆ Q×Q is the transition relation, qI ∈ Q is the start
state, and & ∈ Q→ A∪ {¬A | A ∈ A} ∪ {∧,∨, [], 〈〉} is the labeling, and the
following holds for all q ∈ Q.

|{q′ | q → q′}|



= 0 if &(q) ∈ A ∪ {¬A | A ∈ A}
≥ 1 if &(q) ∈ {∧,∨}
= 1 if &(q) ∈ {[], 〈〉}

2. Alternating tableau transition system 〈Q,→, qI , &〉 is hesitant if for every
non-trivial1 strongly connected component Qi ⊆ Q of the graph 〈Q,→〉 and
every q ∈ Qi, either &(q) ∈ {∧, []} or &(q) ∈ {∨, 〈〉}. In the former case Qi is
called existential, while in the latter it is called universal.

3. A hesitant alternating tableau automaton (HATA) is a tuple 〈Q,→, qI , &,
〈G,B〉〉 where 〈Q,→, qI , &〉 is a hesitant alternating tableau transition system
and G,B ⊆ Q constitute the acceptance condition.

HATAs are very similar to the hesitant automata in [KVW00]; the only real dif-
ference is the use of labels on states rather than transitions to record “alternation
information”.

HATAs generate “runs” as they process Kripke structures.

Definition 6. Given HATAM = 〈Q,→, qI , F, &, 〈G,B〉〉 and a Kripke structure
T = 〈S, sI ,→, V 〉, a run of M on T is a maximal tree in which the nodes are
are labeled by elements of S ×Q as follows. (1) The root of the tree is labeled by
〈sI , qI〉. (2) For each node σ labeled by 〈s, q〉:

1. If &(q) ∈ A then σ is a leaf.
2. If &(q) = ∧ and {q′ | q → q′} = {q1, · · · , qm}, then σ has children σ1, · · · , σm,

with σi labeled by 〈s, qi〉.
3. If &(q) = ∨ then σ has one child, σ′, which is lableled by 〈s, q′〉 for some

q′ ∈ {q′ | q → q′}.
4. If &(q) = [] , q → q′, and {s′ | s → s′} = {s1, .., sm} then σ has children

σ1, .., σm, with σi is labeled by 〈si, q
′〉.

5. If &(q) = 〈〉 and q → q′ then σ has one child σ′, and σ′ is labeled by 〈s′, q′〉
for some s′ such that s→ s′.

Note that any infinite path in a run eventually consists only of states from the
same nontrivial strongly connected component. We call such an infinite path
existential if this component is existential and universal otherwise. Because the
transition relation of T is total, the only leaves in a run must be labeled either
by 〈s,A〉 or 〈s,¬A〉 for some A ∈ A. We call leaves successful if they are labeled
〈s,A〉 and s ∈ V (A) or 〈s,¬A〉 and s �∈ V (A). A run is successful iff: every leaf is
successful; every existential infinite path contains infinitely many occurrences of
1 A strongly connected component Qi is nontrivial if there exist q, q′ ∈ Qi such that

q → q′.
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states in G; and every universal infinite path contains finitely many occurrences
of states in B.

In order to determine whether or not a HATA M has a successful run on
Kripke structure T , [KVW00] advocates checking the nonemptiness of a product
automaton built from M and T . In the slightly revised setting considered here
the nonemptiness check may be defined on an and-or graph GT,M defined as
follows.

– The vertex set of GT,M is S ×Q.
– The edge relation E is defined by: 〈〈s, q〉, 〈s′, q′〉〉 ∈ E iff 〈s′, q′〉 satisfies the
conditions of being a child of 〈s, q〉 in some run of M on T .

– Labeling function f ∈ S ×Q→ {∧,∨} is defined as follows.

f(〈s, q〉) =



∧ if &(q) ∈ {∧, []} or 〈s, q〉 would be a successful leaf in some
run

∨ otherwise

The model-checking routine works by assigning truth values 0 and 1 to vertices
in GT,M . Details may be found in [KVW00], but the rough idea is to process the
strongly connected components in GT,M in reverse topological order, starting
with components containing no edges to other components. Strongly connected
components in GT,M have the property that all nodes share the same label (∧
or ∨). Sink nodes in the graph correspond to successful or unsuccessful leaves in
some run and are assigned 1 in the first case and 0 in the latter. The following
process is then repeated for each component. First, values in lower components
that the current component has edges into are “propagated upwards” into the
current component, and new boolean values assigned to nodes in the current
component in the obvious manner (i.e. a ∨-labeled node is assigned 1 if it has
an edge to a node assigned boolean value 1, etc.). This propagation process is
continued until no more is possible. If the component still has unlabeled nodes
then all nodes are assigned 1 if the component is labeled ∨ and there exists a
vertex in the component of form 〈s, q〉 for some q ∈ G, or if the component is
labeled ∧ and there is no vertex of form 〈s, q〉 for some q ∈ B; and 0 otherwise. It
may be shown that 〈sI , qI〉 is assigned 1 if HATA M accepts Kripke structure T
and 0 otherwise.

In order to extract support sets from the information computed by this
model-checking algorithm, we first define a boolean equation rom GT,M as fol-
lows. Variables correspond to vertices in GT,M , while right-hand sides are con-
structed from labels and edges in GT,M : if the label of a vertex v is ∧, then
the right-hand side for the variable v is

∧
{v′ | 〈v, v′〉 ∈ E}, and similary for

∨. Blocks are constructed from the strongly connected components of GT,M .
Let G1, . . . , Gm be these components listed in topographical order: if i < j then
there is no edge from any node in Gj to Gi. For each Gi we construct two parity
blocks Ei, E

′
i as follows.

If Gi’s label is ∨: Let Ei contain the equations whose left-hand sides 〈s, q〉 are
nodes in Gi and with the property that q ∈ G. Let E′

i consist of the other
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equations whose left-hand sides are in Gi. Assign ν as the parity of Ei and
µ as the parity of E′

i.
If Gi’s label is ∧: Let Ei contain the equations whose left-hand sides 〈s, q〉 are

nodes in Gi and with the property that q ∈ B. Let E′
i consist of the other

equations whose left-hand sides are in Gi. Assign µ as the parity of Ei and
ν as the parity of E′

i.

The boolean equation system ET,M is the sequence E1E
′
1 . . . EmE

′
m. One may

prove the following.

Theorem 3. Let T be a Kripke structure and M a HATA, and let s be a state
in T and q a state in M . Then [[ET,M ]](〈s, q〉) = 1 iff the value assigned to node
〈s, q〉 in GT,M by the model-checking algorithm of [KVW00] is 1.

The evaluation procedure then computes the dependency set, denoted as
ξ(〈sk, qk〉), for every vertex 〈sk, qk〉 in GT,M . Recall that vertices in a strongly-
connected component Gi are evaluated in two steps. Variable 〈sk, qk〉 is assigned
a value in the first step if the values of its children determines permit; in this
case we define ξ(〈sk, qk〉) to contain the children whose value matches 〈sk, qk〉.
In the second step, the remaining vertices in Gi are evaluated. We consider
the case that Gi is existential; the case that Gi is universal can be handled
similarly. If there is a vertex 〈s′, q′〉 in Gi with q′ ∈ G, then the other ver-
tices in Gi have value 1. We build a spanning tree rooted at 〈s′, q′〉 for the
unassigned variables in Gi using the inverse edge relation E−1. For each node
〈s′′, q′′〉 �= 〈s′, q′〉 in the tree, we assign ξ(〈s′′, q′′〉) the singleton set contain-
ing the parent of 〈s′′, q′′〉 in the tree. We then make ξ(〈s′, q′〉) contain one of
its children in Gi with respect to E (the choice is abitrary). If there does not
exist a 〈s′, q′〉 such that q′ ∈ G, then every remaining vertex 〈sk, qk〉 on Gi

is assigned 0 and ξ(sk, qk) = {〈sl, ql〉 | 〈〈sk, qk〉, 〈sl, ql〉〉 ∈ E} . We now con-
struct a support set Γ = 〈r, 〈s, q〉, ΞT,M 〉 after 〈s, q〉 is labeled, where r is the
label of 〈s, q〉, Ξ(〈sk, qk〉) = ξ(〈sk, qk〉) if 〈sk, qk〉 is assigned r and r = 1, and
Ξ(〈sk, qk〉) = ξ(〈sk, qk〉) if 〈sk, qk〉 is assigned r and r = 0 (this assignment in
effect assigns the truth value 0 to every variable in ξ(〈sk, qk〉)). One may check
that Γ satisfies the requirements of being a support set and that “extracting”
this support set does not affect the time or space complexity of the procedure.

We close this section with some comments about decorated support sets. In
CTL∗ automaton-based model checking the HATA is constructed from a CTL∗

formula provided by the user. As the model checker should return a decorated
support set, one may wonder how to define the functions πT and πΦ. In the
procedure just outlined the mapping πT is straightforward, since every boolean
variable corresponds to a pair 〈s, q〉, where s is a system state. As for πφ, the
HATA constructions in [BCG01, KVW00] work by associating HATA states with
(sets of) CTL∗ propositions. These CTL∗ propositions can then be returned
by πΦ.
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5 Diagnostic Information

In the remainder of the paper we study two different applications for support
sets. In this section we show how support sets may be used to compute diag-
nostic information in general, and linear witnesses in particular. We note that
support sets may also be used to compute winning strategies for the purposes
of diagnostic routines based on game-based model checking [SS98], although we
do not pursue this point here.

Counterexamples are used to indicate why a Kripke structure fails to satisfy
a temporal property. Intuitively, a counterexample is a part of system “respon-
sible” for the property being violated. Dually, when system satisfies a temporal
property, a user may still desire some explanation given as a portion of the
system, called a witness, responsible for the property being satisfied. Although
counterexample generators have existed for a number of years, to the best of our
knowledge [CGMZ95] represents the first systematic explanation of how they
work. Their definitions in the setting of CTL require that counterexamples and
witnesses to be linear, i.e., execution paths of the system. In general the exis-
tence of linear counterexamples / witnesses depends on the structure of formulas
as well as the Kripke structure being checked. In the case of CTL, for example,
linear counterexamples (witnesses) exist if the primary path quantifier used is
A (E). [KV99] gives more general conditions for CTL∗ and shows show that
judging whether a CTL∗ formulae admits such counterexamples / witnesses is
PSPACE-complete.

Here we show how support sets may be used to generate linear counterex-
amples / witnesses without reference to the temporal logic in which system
properties are formulated. In the rest of this section we restrict our attention to
Kripke structures that are self-loop-free: no state s has the property that s→ s.

Definition 7. Support set 〈r,X,Ξ〉 is linear if for all Xi such that Ξ(Xi) is
defined, |Ξ(Xi)| ≤ 1. Decorated support set 〈Γ, πT , πΦ〉 is linear if Γ is.

If a decorated support set is linear then one may extract a linear witness to the
result contained in the support set as follows. Let Γ = 〈Γ ′ = 〈r,X,Ξ〉, πT , πΦ〉 be
a linear decorated support set for Kripke structure T . Then the state projection
πS(Γ ′) is defined as follows: let X1X2 . . .Xn be a depth-first search of the graph
induced by Ξ beginning at X = X1. Then πS(Γ ) = πT (X1) . . . πT (Xn). In
general, πS(Γ ) is not an execution sequence of T , since the definition of decorated
support set allows the states associated with adjecent variables in Γ to be the
same, and hence not connected by a transition. However, a subsequence of π(Γ )
is guaranteed to be a computation path of T : delete all but one occurrence of
a state in contigous subsequences containing only this state. Let π(Γ ) be this
sequence; it is easy to show that it is a computation path in T that is a linear
model of the result reported by the model checker.

In general support sets are not linear, but they canminimized in the following
sense. A support set Γ = 〈r,X,Ξ〉 is minimal if the following conditions hold.
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1. For every X ′ such that Ξ(X ′) is defined, X
Γ
→∗ X ′ (i.e. X ′ affects X).

2. If r = 1 then for every variable X ′ whose right-hand side uses
∨

such that
Ξ(X ′) is defined, |Ξ(X ′)| = 1, and dually for r = 0.

Intuitively, a support set is minimal if it contains no extraneous information. It
is straightforward to convert a support set Γ = 〈r,X,Ξ〉 into a minimal support
set Γmin = 〈r,X,Ξmin〉. The witness-extraction procedure can be applied to
support sets that, while not linear themselves, minimize to linear support sets.
Finally, we note that even when minimial support sets are not linear, they may
be used to generate “recursive” linear witnesses à la [CGMZ95] when all but
one element in Ξ(X ′) are guaranteed to belong to different strongly connected
components than X ′ for any X ′.

6 Certifying Model-Checking Results

In this section we give an efficient algorithm to check the validity of a support
set submitted by a model checker. Such a routine has several practical motiva-
tions [Nam01]:

– It can be used to check for bugs in model checkers: if a support set returned
by a checker is in fact not a support set, then the checker’s reasoning is
faulty.

– Support sets can be used as “certificates” for system correctness. A valid-
ity checker can then be used to check the “internal consistency” of such a
certificate.

In what follows we fix boolean equation system E = E1 . . . En. Let Γ =
〈r,X,Ξ〉 be a support set for E submitted by a checker. Without loss of gen-
erality, assume r = 1. Validating Γ amounts to checking that Properties I, II
and III in Definition 3 hold. Properties I and II Γ can be easily ascertained with
routines that execute in O(|Γ |). Checking Property III on Γ can be reduced to
an even-cycle problem on labeled directed graphs. A labeled directed graph is
a tuple G = 〈D,V,E, &〉, where & : V → D labels each vertex with a element
from D. The even-cycle problem is given as follows: given a labeled directed
graph G = 〈{1, 2, · · · , k}, V, E, &〉, determine whether there is a cycle ρ in it such
that minv∈ρ{&(v)} is even.

Γ induces a labeled directed graph G = 〈{1, 2, · · · , k}, V, E, &〉 as follows. V
is the set of all variables defined on Ξ, E is the relation

Γ
→. & satisfies the

following criteria.

– If X ′, X ′′ ∈ lhs(Ei) then &(X ′) = &(X ′′).
– If i < j then &(Ei) ≤ &(Ej). (Here &(Ei) is the common value shared by all
left-hand sides in Ei.)

– If the parity of Ei is µ then &(Ei) is even; otherwise, &(Ei) is odd.

A labeling satisfying these properties can easily be constructed in |E| time with
k ≤ n, where n is the number of blocks. Checking III on Γ is equivalent to
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checking whether there is an even cycle in G. [KKV01] shows that the even-cycle
problem can be solved in O((|V |+ |E|)log(#k

2$)). Their approach is a variant of
an algorithm for hierarchical clustering [Tar82]. As our construction of & above
restricts k ≤ n, checking property III can be done in O(|Ξ|log(#n

2 $)), where n is
the number of parity blocks of E .

The complexity can be improved by noticing that an even-cycle can only
exist in a strongly-connected component of GΓ . Therefore, we can check each
strongly-connected component independently. By Definition 2, the maximal la-
beling number k won’t exceed the alternation depth of E . Thus, the overall time
complexity is O(|E| · |T | · log(#ad(E)

2 $)), which is less than the lower bound of
µ-calculus model-checking. This suggests that the certifier will not in general
increase the cost of overall complexities of a verification tool.

7 Conclusions and Related Work

In this paper we have presented support sets as a generic data structure for
conveying “meta-model-checking” results, i.e. results regarding the means by
which model-checking answers are arrived at. We showed how model checkers
may be modified to return support sets and how support sets may be used
to generate diagnostic information and may be efficiently checked for internal
consistency. We have also studied other uses for support sets not mentioned
in this paper, including vacuity checking [KV99]. Prototype implementations of
these results are being investigated in the context of the CWB-NC verification
tool [CS96].

The idea of retaining evidence during model checking as a basis for justifying
the result has appeared in several recent publications. In [PZ01, PPZ01] ideas
in the setting of linear-time temporal-logic are presented. Regarding the mu-
calculus, [Mat00] uses a distinguised solution to alternation-free boolean equa-
tion system, called extended boolean graphs (EBGs), to encode the proof struc-
tures. EBGs can be viewed as a special case of support set in the alternation-free
fragment of the mu-calculus. Even closer to this work is that in [Nam01], which
uses deductive proofs to encode evidence for model-checking in the modal mu-
calculus. That paper also discusses some of the same applications mentioned
here for deductive information; a technical point of departure, however, is that
deductive proofs in that setting require extra information in form of ranking
information which records information on the number of “approximations” of
outer variables that an inner variable depends on. This requirement plays the
same role as the circularity restriction for support sets: in fact, the ranking in-
formation specifies the position of a variable in a dependency loop. With this
extra information verifying the validity of proofs is easier than the verification for
support sets. An obvious drawback is that storing ranking information requires
additional space, and it also requires model checkers to maintain the informa-
tion about numbers of approximations for variables. This information is not
typically computed by on-the-fly (local) algorithms due to its top-down evalua-
tion fashion. Therefore, it is not clear how ranking information can be collected
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for local algorithms. On the other hand, support sets require only dependency
information, which is computed by both global and local algorithms.
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