
Test Criteria for Model-Checking-Assisted Test Case Generation:
A Computational Study

Bolong Zeng and Li Tan∗

School of Electrical Engineering and Computer Science
Washington State University

Richland, WA 99352
{bzeng, litan}@wsu.edu

Abstract

Test case generation is often cited as one of the most
challenging tasks in testing dependable systems [9]. Be-
sides benefits as a verification technique by its own right,
model checking is emerging as an efficient method for au-
tomating test case generation. Existing testing criteria and
a range of new criteria inspired by formal requirements
have been used in model-checking-assisted test generation.
This paper reviews some of these existing and new test cri-
teria. We developed a unified framework for evaluating
the effectiveness of these test criteria and the efficiency of
model-checking-assisted test generation for these criteria.
The benefits of this work are three-fold: first, the compu-
tational study carried out in this work assesses the practi-
cal effectiveness and efficiency of model-checking-assisted
test case generation, which are important metrics to con-
sider for selecting the right test criteria and test genera-
tion approach. Second, we proposed a unified test genera-
tion framework based on generalized Büchi automata. The
framework uses the same off-the-shelf model checker, in this
case, SPIN model checker [10], to generate test cases for
different criteria and compare them on a consistent basis.
Last but not least, we describe in great details the method-
ology and automated test generation environment that we
developed on the basis of our unified framework. Such de-
tails are of interest to researchers who needs to carry out
their own experimental study on test criteria, and to practi-
tioners who want to integrate model-checking-assisted test
generation into their testing process.

1 Introduction

Model-checking has become an important player in the
field of verification technologies since its debut [4]. It is

∗Corresponding author.

now widely used in an arrange of applications such as the
autopilot modules in airplanes, and deep space vehicle [18].
Model checking provides a rigid and mathematically sound
proof for the correctness of a variety of systems that are
crucial to industries and society. On the other hand, testing
remains an important force in the field and its value is ac-
knowledged by industrial practices and standards. For ex-
ample, DO-178B [23], the standard for avionics software,
is known for its rigorous requirements for testing crite-
ria, such as the Modified Condition and Decision Coverage
(MC/DC).

Model-checking-assisted test generation is one of the
strategies that harness the synergy of both verification tech-
nologies [1]. Over years model checking community de-
veloped efficient algorithms to search the state space of a
system and reason its temporal behavior. The basic idea be-
hind model-checking-assisted test generation is to use this
powerful searching capability provided by a model checker
to search for execution paths of a system that satisfy a given
test criterion, and then use paths to synthesize test cases. An
apparent benefit of model-checking-assisted test generation
is that model checkers can be reused to improve the effi-
ciency of producing test cases, and in many cases, a pow-
erful model checker may be able to systematically search
the state space of a system and find test cases that are not
apparent to the eyes of developers and quality engineers.

In practices model-checking-assisted test generation
makes use of counterexample generation capability pro-
vided by many contemporary model checkers [2]. The ob-
jectives of a test criterion are encoded as temporal logic
properties, often called “trap properties” [7]. Various strate-
gies are proposed to translate existing test criteria to trap
properties [8, 12, 22]. In [25], we proposed a syntax-based
approach that extracts trap properties from temporal speci-
fication in Linear Temporal Logic. The approach is based
on the notion of “vacuity” [16]. In [24], we proposed
a semantics-based approach to synthesize trap properties

from temporal specification in Büchi automata.
A question for model-checking-assisted test generation

is how it performs in practice. The question can be fur-
ther refined to two research questions: (i) how effective are
test cases generated from different test criteria, and (ii) how
efficient is a model-checking-assisted approach for a given
test criterion. Besides theoretical interests, studies on these
questions are of practical importance: studies would pro-
vide heuristic to practitioners on how to select test criteria to
achieve desired test effectiveness, given time and resource
allocated to test case generation.

The main motivation behind our work is to present a
unified framework for evaluating and comparing the perfor-
mance of various test criteria in context of model-checking-
assisted test case generation. Specifically, We measure the
efficiency of a model checker generating test cases for a
given test criterion, and we assess the effectiveness of a
given test criterion by measuring cross-coverage percentage
with respect to other test criteria. The unified test frame-
work enables us to take measurement consistently on the
same platform, reducing the performance variations intro-
duced by other factors.

Last but not least, we describe in great details the tool
and techniques we developed for automating test genera-
tion process. Such details are of interests to researchers
who need to carry out their own experimental study on
test criteria, and to practitioners who want to integrate
model-checking-assisted test generation into their testing
processes.

The rest of the paper is organized as follows: Section 2
reviews the notations and prior knowledge that will be used
in the rest of the paper. Section 3 describes test criteria and
the strategies used to translate the criteria to linear-temporal
trap properties. Section 4 introduces the methodology and
workflow that we developed for this computational study.
Section 5 discusses the result of our computation study. Fi-
nally Section 6 concludes this paper.

1.1 Related Works

In our study we compare an array of existing test crite-
ria and property-based test criteria. A variety of strategies
[8, 12, 22] have been proposed to translate the existing test
criteria to trap properties, and these strategies have been in-
corporated into our unified framework. Fraser et al. [7]
studied various test criteria in context of model-checking-
assisted test generation. In addition to some of test criteria
studied in [7], we also include a semantics-based coverage
criterion [24]. In [7] authors use CTL as the underlying
temporal logic to specify trap properties. A counterexam-
ple for CTL may not necessarily be linear [3]. In this study
we use Büchi Automata as the underlying formalism for
temporal properties. For most of test criteria we translate

them to LTL formulae, which are then translated to Büchi
Automata. Using LTL and Büchi Automata as underlying
temporal logic has two benefits: first, since counterexam-
ples for Büchi Automata are linear, these counterexamples
can be used to generate test cases, which are required to be
linear for most of testing applications. Second, it enables us
to compare existing test criteria with a new semantics-based
test criterion in [24], which is based on Büchi Automata.

2 Preliminaries

2.1 Kripke Structure, Traces, and Tests

We use Kripke Structrue to model a system. A Kripke
structure is a finite transition system in which each state
is labeled with a set of atomic propositions. Each atomic
proposition represents a primitive property held at a state.

Definition 2.1. Given the alphabet of atomic propositions
A, a Kripke structure is denoted as a tuple 〈S, s0,→, T 〉. S
represents the set of states while s0 ∈ S is the starting state.
→⊆ S × S denotes the transitions among them, and T :
A → 2S labels a states with a set of atomic propositions.

For brevity and clarity, we use s → s′ in lieu of
(s, s′) ∈→. We let atomic propositions range over a, b, . . .
in the alphabet A. The set of all the atomatic propositions
and their negations forms the set of literals L.

A sequence of Kripke structure is a series of states Σ =
si0si1 . . . in which for any integer k ≥ 0, sik → sik+1

. A
trace is a maximal sequence which starts with s0, the start
state.

Definition 2.2. A sequence Σ is lasso-shaped if it is in the
form of σ1(σ2)ω , where σ1 and σ2 are both finite sequences.

A lasso-shaped sequence can be understood as a se-
quence that after traveling through a certain number of
states, falls into a loop of sub-sequence which repeats in-
finitely. The sequence with such feature may be reduced to
a bounded finite sequence for testing purpose [25].

Definition 2.3. A test is a sequence defined on 2L, and a
finite test is a test case. A finite set of such test cases is a
test suite. Passing a test case t implies that the system has a
trace R, in which the i-th element: R[i] ∈ T (t[i]).

2.2 Generalized Büchi Automaton

A generalized Büchi automaton (GBA) is an ω-
automaton, whose acceptance language is essentially an ex-
tended version of a regular language with infinite length.
We define an extended version of GBA with an alphabet
of literals [24], along with the usual states, transitions and
acceptance condition.

Definition 2.4. A generalized Büchi automaton is denoted
as a tuple 〈P, S, S0,∆,Λ,F〉, in which S is a set of states,
S0 ⊆ S is the set of start states, ∆ ⊆ S × S represents the
transitions, and the F ⊆ 2S , which is a set of sets of states,
forms the acceptance condition. In addition, P is a set of
literals, and Λ : S → 2P is the labeling function that maps
each state to a set of literals.

Similarly, we write s → s′ in lieu of (s, s′) ∈ ∆. A run
of a generalized Büchi automaton B is an infinite sequence
R = s0s1... such that s0 ∈ S0 and si → si+1 for every i ≥
0. inf(R) is used to represent a set of states that appear for
infinite times on R. A successful run of B must satisfy the
following condition that for every F ∈ F , inf(R)∩F 6= ∅.
A GBAB with the complete set of literals L accepts infinite
words over alphabet 2A. Letw be a word from the alphabet,
B has a run R induced by w, denoted as w ` R, if and only
if for every i < |w|, w[i] ∈ Π(Λ(R[i])), where Π is the
function mapping the literals to the atomic propositions that
are associated with the same states. B accepts w, denoted
as w |= B if and only if B has a successful run R such that
w ` R.

2.3 LTL Model Checking

We present the system requirements in the form of Lin-
ear Temporal Logic (LTL) [6]. A path formula’s syntax is
defined recursively as

φ ::= a | ¬φ | φ ∧ φ |Xφ | φUφ

The basic semantics of a path formula are defined with re-
spect to a Kripke structure K = 〈S, s0,→, T 〉. If R is a
trace of K and a ∈ A is an atomic propositon, we denote
R |=K a if and only if R[0] ∈ T (a). Atomic proposition
true may be satisfies by any state, whereas no state may
satisfy atomic proposition false.

The “next” operator X in Xφ means that φ has to hold
starting from next state. The “until” operator U in ϕUψ
requires that ϕ has to hold until eventually ψ becomes true.
In addition, we define ∨ as a dual of ∧, and the “release”
operator R as a dual of U. For convenience, Gφ and Fφ
are often used to denote false R φ and true U φ respec-
tively, bearing the meanings of φ always holds and φ will
eventually hold.

A and E are path quantifiers that address formulae of
LTL and its dual logic ∃LTL in the form of Aφ and Eφ,
meaning that φ holds on all paths or there exists a path
on which φ holds. Obviously, an LTL formula could be
negated into a ∃LTL formula, and vice versa. By definition,
a single trace could be used to prove or disprove the hold-
ing of a ∃LTL or LTL formula, such trace is called a linear
witness or a counterexample for a model-checking problem
[5]. It is further shown that there always exists such witness
and counterexample that are lasso-shaped.

Definition 2.5. Given a trace γ on a Kripke structure K. If
γ |=K φ holds on K, γ is a linear witness for the ∃LTL
model-checking problem 〈Eφ,K〉 and a linear counterex-
ample for LTL model-checking problem 〈A¬φ,K〉.

3 Coverage Criteria

This section gives a brief introduction of the test criteria
we covered in this work. For each criteria, we explain how
the trap properties, or in the case of Büchi Automata state
coverage, the “trap automata” are generated for the experi-
ments. In this paper, we refer to trap properties as desirable
properties, i.e., test cases are generated with the purpose of
satisfying them. We use LTL as the underlying logic to de-
scribe temporal properties as opposed to CTL in [7]. Both
LTL and CTL belongs to the CTL* family. While they share
a common subset, there are properties that can be described
only by one of them. The motivation behind our choice is to
build a unified framework that could incorporate other cri-
teria such as the Büchi Automata based state coverage cri-
teria that are not directly based on temporal logic formulae.
Also, counterexamples for LTL are always linear, which is
a favorable character for most testing applications.

3.1 Branch Coverage Criterion

Branch coverage criterion belongs to the logic expres-
sion criteria [13], and is one of the most commonly-used
test coverage standards. The criterion focuses on the truth
value of the guard of a transition in a transition system, for
example, an “if-else” construct in a program. This criterion
covers the dynamic behaviors of a system by testing both
true and false outcomes of a logic expression. It needs to
access the structure of the system and hence it is classified
as a syntax-based white-box testing approach.

We orchestrate our experiments in the following manner.
A Boolean flag bi is attached to the i-th branch of a condi-
tional construct of a system, thus checking the value of the
flag could reveal that whether a branch is covered or not.
We write the trap property as below,

EF(bi ∧Xtrue)

A witness produced for the trap property would indicate the
i-th branch is covered. Xtrue is added to ensures that the
transition induced by the i-th branch is completed, i.e., the
transition reaches its destination state.

For a multiple-branch conditional construct such as
“switch” statement in C/C++ or “if” block in Promela, the
“default” branch is executed if all other branches fail. To
make the criterion consistent, we assume that there is al-
ways a “default” branch, even it is undefined and/or has an
empty code body.

3.2 Data-flow Coverage Criteria

It has been shown that data-flow coverage criteria may
be reduced to model checking problems [11]. One of them
emphasizes on covering definition-use pairs in a system
[21]. We adopt the requirements of the all-Definitions cov-
erage criterion in our work, which requires to cover all the
definition-clear paths in the system.

Same as branch coverage criterion, data-flow coverage
criteria are also white-box testing approaches. We apply a
similar strategy as in Section 3.1 to the all-definition cover-
age criterion. We denote a definition and usage of a variable
v as d(v) and u(v). We also write the disjunction of all the
definitions of v as D(v). The trap property is generated for
every definition and usage of v as follows:

EF(d(v) ∧X(¬D(v)U(u(v) ∧Xtrue))

The property means that starting from the state that a
definition is reached, no other definition can occur until the
usage of x eventually happens. It also guarantees that the
system is still executable after the usage. Any trace that the
model checker is able to find is a witness of a definition
clear path from d(v) to u(v).

3.3 Property Coverage Criterion

Inspired by the requirement of checking an implemen-
tation against a specific property instead of syntax-based
standards, Tan et al. proposed the property-coverage metric
and criterion towards model-checking-assisted test genera-
tion [25]. The property coverage metric measures how well
an LTL property is tested by a test suite. A mutation of a
formula f is written as f [φ ← ψ], in which φ is a subfor-
mula of f that is being replaced by ψ.

Definition 3.1 (Property-Coverage Metric [25]). Given a
test t. Consider a mutation f [φ← ψ], if every Kripke struc-
tureK that passes t is unable to satisfy the mutated formula,
then t covers the subformula φ in f . The property-coverage
metric is a preorder relationship�f for property f . For test
suites TS1 and TS2, TS1 �f TS2 if and only if for every
subformula φ of f covered by a test t ∈ TS2, there exists a
test t′ ∈ TS1 that also covers φ.

The intuition behind the property-coverage metric and
criterion is that a test suite shall test the relevancy of a sys-
tem with respect to its requirement specification. One way
to test the relevancy is to check whether every sub-formula
plays an indispensable role in defining the requirement, that
is, every sub-formula needs to be covered in test.

Definition 3.2 (Property-Coverage Criterion [25]). TS is
a property-coverage test suite for a system K and an LTL
property f ifK passes TS and TS covers every subformula
of f .

Function � defines the polarity of a sub-formula.
�(φ) = true for a subformula φ in f if it is nested in
odd number of negations; otherwise �(φ) = false [25].
The trap property for a test covering the sub-formula φ may
be defined as,

EF(¬f [φ← �(φ)])

For example, consider a LTL property describing a vehi-
cle at an intersection: φv = red → X(¬red R ¬acc),
meaning that “after the light turns red, the driver will
not accelerate the vehicle until the light switches”. Us-
ing R instead of U means that the light may or may
not switch. Using the property-coverage criterion on
atomic propositions, we obtain three “trap” properties:
¬(true→ X(¬redR ¬acc)) = X(redU acc), ¬(red→
X(¬true R ¬acc)) = red ∧ X(G acc), and ¬(red →
X(¬red R ¬true)) = red ∧X(red U true) = red. For
each of these properties, a test suite covering φv has a test
case satisfying the property. For the details of the property-
coverage criterion, interested users may refer to [25].

3.4 Büchi Automata State Coverage Criteria

Recently Tan [24] proposed a semantic-oriented testing
strategy for requirement specification in Büchi automata.
The work is an extension of [24]. Unlike the property-based
coverage criterion whose definition is based on the syntacti-
cal structure of an LTL formula, the coverage criteria in [24]
are based on Büchi automata, which capture the semantics
of a linear-time requirement specification.

Definition 3.3 (Covered States [24]). Given a generalized
Büchi automaton B = 〈P, S, S0,∆,Λ,F〉, if there exists a
successful run R goes through s that can be induced by a
test t, then t weakly covers s. If B accepts t, while every
successful run R of B such that t ` R, it goes through s,
then t strongly covers s.

Trap properties are given in the form of Büchi automata,
transformed from the original Büchi automaton encoding
linear-time requirements. To strongly cover a state s of the
original Büchi automatonB, one may remove the state from
B. The result is a State Excluding Generalized Büchi Au-
tomaton (SE-GBA) Bs̄. The “trap automaton” for gener-
ating test strongly covering s is ¬Bs̄, the negation of SE-
GBA.

To weakly cover a state s ofB, one may construct a State
Marking Generalized Büchi Automaton (SM-GBA) B(s) as
follows: first we get a replica B′ of the original Büchi au-
tomaton B, and then we add transitions from s of B to B′’s
counterparts of the destinations of these transitions. The
start states of the resulting SM-GBA B(s) are those of B,
and the acceptance conditions of B(s) is that of B′. For
the details of SE-GBA, SM-GBA, and their constructions,
interested readers may refer to [24].

GBA state coverage criteria

Specifications given
in GBA

Graph
transformation

Trap properties in GBA

Property coverage criteria

Specifications given
in LTL formula

Atomic
proposition

replacement

Trap properties in
∃LTL formula

LTL formula

negation

GBA

negation

translation

Branch coverage criteria Data-flow coverage criteria

Model checker

Test
case

Linear
counterexample

System model

Figure 1. Test generation procedure

4 Experiment Methodology and Workflow

We propose a uniform framework for evaluating prac-
tical performance of testing criteria proposed for model-
checking-assisted test generation. The framework contains
two main components: a model-checking-assisted test gen-
eration platform capable of handling various test criteria;
and a performance-comparison tool that computes cross-
coverage between different test criteria.

Figure 1 shows the general workflow of our model-
checking-assisted generation platform. We use SPIN as the
underlying model checker [10] and model a system under
test in Promela, the system modeling language used by the
SPIN. For test criteria whose trap properties may be ex-
pressed in ∃LTL, such as branch coverage criterion (Section
3.1), data-flow coverage criteria (Section 3.2), and property-
coverage criterion (Section 3.3), we first negate the trap
properties to obtain LTL formulae. These LTL formulae
are then fed to SPIN, along with the Promela model of the
system under test. Internally SPIN translates a LTL formula
to a Büchi automaton and performs Büchi-automaton-based
model checking. If the system model does not satisify the
LTL formula, SPIN produces a counterexample, which can
be then translated to a test case.

For Büchi Automata state coverage, the specifications
presented in GBA needs to go through a graph transfor-
mation process using Goal [15]. We explain the process
with an example taken from our experiments. Figure 3
shows a generalized Büchi automaton B, which is seman-
tically equivalent to LTL property L1 : G(¬t → ((¬p U
t) ∨G¬p)). It specifies a temporal requirement for GIOP,
the general Inter-Object Request Brokers (ORB) Protocol
[14]. In L1, t stands for a request being sent, and p stands
for an agent receiving a reply. Semantically, L1 holds only
when an agent would never receive any reply until a request

Criteria A

Model
transformation

Trap properties in
∃LTL formula or GBA Model checker

Test
Suite A

 Test
generation

GBA

Comparison
result

Criteria B

System model

 Single trace
 model

Figure 2. Cross comparison procedure

has been made. To produce test cases that strongly covers
state s1, simply removing s1 from the automaton is suffi-
cient to get the SE-GBA Bs1 , as shown on the left side in
Figure 4. Then we take the complement automaton ¬Bs1 as
the “trap automaton”. A counterexample produced by SPIN
for the model-checking problem on “trap automaton” may
be translated to a test case strongly covering s1.

To generate a test case weakly covering s1, the original
GBAB is transformed to a SM-GBAB(s1) as the “trap au-
tomaton” (Figure 4). To construct B(s1), B is duplicated,
then transitions from s1 to s5 and s6 are also added, corre-
sponding to the ones from s1 to s1 and s2 in B. Another
change is that the acceptance states, marked as double cir-
cled states, are all moved to the new automaton. Thus, any
successful run of B(s1) must go through s1, hence satisfies
the requirements of weak state coverage.

It shall be noted that the graph transformation process
changes the semantics of the original automaton. While
the original GBA is equivalent to an LTL formula, after the
transformation, we essentially treat the new automaton as
an equivalent to a ∃LTL formula, since our objective is to
find a linear counterexample, which can be used as the basis
for a test case.

S0

S3

S1

S2

¬p ¬t

¬p ¬t

¬p ¬t

t

t

t

¬p

¬p ¬t¬p ¬t S4

S7

S5

S6

¬p ¬t

¬p ¬t

¬p ¬t

t

t
t

¬p

¬p ¬t¬p ¬t

¬p ¬t

t

S0

S3

S2

¬p
¬t

t

¬p

¬p
¬t

t

B
s

B s()1
1

Figure 4. SE-GBA Bs̄1 and SM-GBA B(s1)

S0

S1

S2

¬p ¬t

¬p ¬t

¬p ¬t

t

t
t

¬p

¬p ¬t¬p ¬t

S3

Figure 3. GBA B for L1

We compare the practical performances of two criteria
by measuring cross coverage. Figure 2 shows the workflow
for measuring cross coverage between two criteria. The ba-
sic approach is to first generate a test suite for one test crite-
rion, and then test the system using the generated test suite
and measure the coverage against the other criterion. We
conduct the experiments in the following ways. A script
written in Java interprets the lasso-shaped counterexample
produced and record each step it has taken along the way.
Then the script transforms the system model accordingly
into a new model that have only one possible execution
path, which is identical to the counterexample. The exe-
cution path is one possible execution of the system under
a test case extracted from the counterexample. By model
checking a single-trace model against the trap properties of
the other criterion, we may measure the coverage of a test
case with respect to the other criterion. The cross coverage
measures to what degree a test suite generated for one cri-
terion may achieve the other test criterion. It serves as an
indicator for a comparison of the practical effectiveness of
two test criteria.

5 Experiment Results

Table 1 shows the result data for the cross-coverage ex-
periments among the criteria. The first model we used
in the experiment describes the general Inter-ORB Proto-
col (GIOP), a key component of the Object Management
Group (OMG)’s Common Object Request Broker Architec-
ture (CORBA) specification [14]. We also have a Promela
model of a sliding window protocol, which depicts the be-
havior of the classic network protocol [20]. The other two
examples we used are models of Lamport’s Bakery algo-
rithm [17] and Peterson’s algorithm [19] for mutual exclu-
sion problem. All of these models have well defined LTL
properties as their correctness requirments specifications.

In Table 1, BC/SC/PC/DC stands for the following
coverage criteria: branch coverage, Büchi automata state
coverage, property coverage and data-flow coverage (all-
definition-use path coverage), respectively. SC-str and SC-
wk represents the strong and weak variants of Büchi au-
tomata state coverage. The left column lists test criteria
from which we generate test suites, and the top row lists test
criteria by which we measure the cross coverage of these
test suites. The figure in the parenthesis represents the per-
centage of feasible test cases produced with respect to the
criteria itself.

The overall result indicates that the two specification-
based coverage criteria show more competent performance,
and in most cases have better cross-coverage results than
the other two traditional criteria. For example, in the exper-
iments for the mutual exclusion algorithms, the Büchi Au-
tomata state coverage criterion triumphs with a complete
full coverage over all the criteria, with property coverage
criterion as a close second. The branch coverage and data-
flow coverage are able to achieve a high percentage over
each other, mostly because the models are so strictly de-
fined that the branches and definition clear paths are heav-

Table 1. Cross-coverage comparison results

GIOP Sliding Window
BC SC-str SC-wk PC DC BC SC-str SC-wk PC DC

BC (100%) 67% 67% 75% 100% (100%) 50% 75% 75% 61%
SC-str 73% (100%) 100% 75% 82% 67% (75%) 75% 75% 70%
SC-wk 77% 100% (100%) 75% 82% 67% 75% (75%) 75% 70%
PC 73% 100% 100% (75%) 78% 72% 100% 100% (75%) 61%
DC 71% 100% 100% 75% (100%) 100% 75% 75% 75% (100%)

Lamport’s Bakery Peterson
BC SC-str SC-wk PC DC BC SC-str SC-wk PC DC

BC (100%) 33% 100% 60% 70% (100%) 67% 67% 60% 100%
SC-str 100% (100%) 100% 100% 100% 100% (100%) 100% 100% 100%
SC-wk 100% 100% (100%) 100% 100% 100% 100% (100%) 100% 100%
PC 75% 100% 100% (100%) 81% 100% 100% 100% (100%) 100%
DC 100% 33% 100% 100% (100%) 100% 67% 67% 80% (100%)

ily overlapped. However, they fell short on evaluating the
critical properties of the algorithms, which is the essence of
the models.

One point worth noting, though, is that in the experiment
for GIOP and sliding window model, the vacuity-based cov-
erage criteria did not cover the logic branches and the data
flow paths perfectly. The reason behind this is for both pro-
tocols, the properties being tested only focus on some of the
behaviors described in the model. Take the GIOP model for
instance, the property is only concerned about the recipient
when it is waiting for or receives a message. It does not
involve other functionalities of the model. Therefore the
generated counterexamples bypassed some code segments
and could not cover the branches and paths.

This observation leads to an important conclusion, that
the quality of the temporal property plays a significant role
in the property-based testing. A property that is more rel-
evant with the model can result in better coverage. On the
other hand, the result on cross coverage could prompt engi-
neers to examine and refine a system design and its proper-
ties. Our future research includes the goal of developing a
strategy of performing property refinement to enhance the
testing approach with the help of the outcome of the afore-
mentioned experiments.

Another difference among these criteria, is that while the
Büchi automaton state coverage and property coverage cri-
teria are more semantically oriented and better at finding
errors, it is slightly more difficult to interprete the results
since the test objectives are not directly source related. The
syntax-based coverage criteria, however, benefit from their
nature of being white-box testing methods, thus more suit-
able for debugging.

In general, the approach we present here can be viewed

as a unified framework for evaluating multiple test criteria
based on their cross-coverage performances. Many other
test criteria can be fit into the framework for comparison
purpose. It is also possible to incorporate other related tech-
niques, such as property refinement or debugging strategy
so that the framework could be further improved and thus
serve a broader purpose.

6 Conclusions

We presented a uniform model-checking-assisted frame-
work for generating test cases for various criteria and then
comparing the performance of these criteria. We described
in details the methodologies and techniques used in our
framework. Our framework is able to incorporate a va-
riety of test criteria, including traditional structure-based
coverage criteria (e.g. branch coverage and data flow cov-
erage criteria), syntax-oriented specification-based criteria
(e.g. LTL property-based coverage criteria), and semantics-
oriented specification-based criteria (e.g. Büchi automaton-
based coverage criteria). The framework assesses the pre-
formance of different test criteria by measuring cross cov-
erage of generated test suites. We proposed an approach
to streamline test case extraction and cross-coverage mea-
surement. Our results validate the benefits of specification-
based criteria used in model-checking-assisted test genera-
tion, but the results also indicate that such benefits largely
depend on the quality of system specification. For furture
works, we will extend the framework to additional test crit-
era, and also plan to develop a tool that fully automates
model-checking-assisted test generation for different crite-
ria, and the cross-coverage measurement.

References

[1] P. E. Ammann, P. E. Black, and W. Majurski. Using model
checking to generate tests from specifications. In In Pro-
ceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM’98), pages 46–54.
IEEE Computer Society, 1998.

[2] D. Beyer, A. J. Chlipala, R. Majumdar, T. A. Henzinger,
and R. Jhala. Generating tests from counterexamples. In
ICSE’04: Proceedings of the 26th International Conference
on Software Engineering, pages 326–335, Washington, DC,
USA, 2004. IEEE Computer Society.

[3] E. Clarke, S. Jha, and Y. Lu. Tree-like counterexamples in
model checking. In Logic in Computer Science,, 2002.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal
logic. In Logic of Programs, Workshop, London, UK, 1982.
Springer-Verlag.

[5] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao.
Efficient generation of counterexamples and witnesses in
symbolic model checking. In Proceedings of the 32nd an-
nual ACM/IEEE Design Automation Conference, DAC ’95,
New York, NY, USA, 1995. ACM.

[6] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[7] G. Fraser and A. Gargantini. An evaluation of model check-
ers for specification based test case generation. In ICST ’09:
Proceedings of the 2009 International Conference on Soft-
ware Testing Verification and Validation, Washington, DC,
USA, 2009. IEEE Computer Society.

[8] A. Gargantini and C. Heitmeyer. Using model checking
to generate tests from requirements specifications. In Pro-
ceedings of the 7th European software engineering con-
ference held jointly with the 7th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering,
ESEC/FSE-7, London, UK, 1999. Springer-Verlag.

[9] M. Heimdahl, S. Rayadurgam, and W. Visser. Specification
centered testing. In Proceedings of the Second International
Workshop on Automated Program Analysis, Testing and Ver-
ification, 2001.

[10] G. J. Holzmann. The model checker SPIN. IEEE Trans.
Softw. Eng., 23, May 1997.

[11] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural.
Data flow testing as model checking. In ICSE ’03: Pro-
ceedings of the 25th International Conference on Software
Engineering, Washington, DC, USA, 2003. IEEE Computer
Society.

[12] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal
logic based theory of test coverage and generation. In Pro-
ceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS ’02, London, UK, 2002. Springer-Verlag.

[13] P. C. Jorgensen. Software Testing: A Craftsman’s Approach.
CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1995.

[14] M. Kamel and S. Leue. Validation of the general inter-orb
protocol (giop) using the spin model-checker. In In Software
Tools for Technology Transfer. Springer-Verlag, 1998.

[15] Y. kuen Tsay, Y. fang Chen, M. hsien Tsai, K. nien Wu,
and W. chin Chan. Goal: A graphical tool for manipulating
bchi automata and temporal formulae. In In Proceedings of
TACAS (2007), LNCS 4424. Springer, 2007.

[16] O. Kupferman and M. Y. Vardi. Vacuity Detection in Tem-
poral Model Checking. Lecture Notes In Computer Science,
1999.

[17] L. Lamport. A new solution of dijkstra’s concurrent pro-
gramming problem. Commun. ACM, 17, August 1974.

[18] F. Lerda and W. Visser. Addressing dynamic issues of pro-
gram model checking. In Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2001.

[19] G. L. Peterson. Myths about the mutual exclusion problem.
Inf. Process. Lett., 12(3), 1981.

[20] L. L. Peterson and B. S. Davie. Computer Networks: A Sys-
tems Approach, 3rd Edition. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[21] S. Rapps and E. J. Weyuker. Selecting software test data
using data flow information. IEEE Trans. Softw. Eng., 11,
April 1985.

[22] S. Rayadurgam and M. P. Heimdahl. Coverage based test-
case generation using model checkers. In Proceedings of
the 8th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems (ECBS
2001). IEEE Computer Society, April 2001.

[23] SC-167 Committee. Software Considerations in Airborne
Systems and Equipment Certification. Technical report, Ra-
dio Technical Commission for Aeronautics, 1992.

[24] L. Tan. State coverage metrics for specification-based test-
ing with büchi automata. In Proceedings of the 5th interna-
tional conference on Tests and proofs, TAP’11, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[25] L. Tan, O. Sokolsky, and I. Lee. Specification-based test-
ing with linear temporal logic. IEEE International Con-
ference on Information Reuse and Integration (IEEE IRI-
2004), November 2004.

