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ABSTRACT
We propose a model-based framework for developing self-
monitoring embedded programs with temporal logic spec-
ifications. In our framework the requirement specification
of an embedded program is encoded in the temporal logic
MEDL. We propose an algorithm that synthesizes a model-
based monitor from a MEDL script. We also introduce a
technique that instruments a system model to emit events
defined in the model-based primitive event definition lan-
guage mPEDL. The synthesized model-based monitor may
be composed with the instrumented model to form a self-
monitoring model, which can be simulated for design-level
verification; the composed self-monitoring model can also
be used to generate a self-monitoring embedded program,
which can monitor its own execution on the target platform
in addition to its normal functions. Our approach com-
bines the rigidness of temporal logic specifications with the
easy use of a toolkit M2IST that we developed to automate
the process of building a self-monitoring embedded program
from a system model and its requirement specification.

Categories and Subject Descriptors
I.6.4 [Computing Methodologies]: Simulation and Mod-
eling—Model Validation and Analysis ; D.2.4 [Software En-
gineering]: Software/Program Verification—Formal meth-
ods
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1. INTRODUCTION
Embedded systems are now part of our everyday life. En-

suring the correct functioning of these systems also becomes
ever challenging. Model-based design [2, 8, 9] is embraced
by research and engineering communities as a promising ap-
proach to develop dependable embedded systems. In model-
based design engineers start with the model of a system,
hence they can analyze the design before its implementa-
tion. Model-based design also facilitates rapid prototyping
by means of automatic model-based code generation. Tools
such as Simulink/Stateflow [8], GME[9], and Charon [2] have
been developed in academia and industry to support model-
based design. It is important to ensure that an embedded
system model as well as its implementation meets its require-
ments. We propose a model-based framework for building
self-monitoring embedded systems, which checks its own ex-
ecution against a temporal logic-based specification.

Our work is inspired by software runtime verification. Run-
time verification checks the execution of a program against a
formal requirement [3, 4, 7]. Expanding it to the domain of
model-based embedded systems presents several challenges:
first, since many embedded systems consist of both analog
and digital devices, they are often modeled as hybrid au-
tomata whose executions contain both discrete and contin-
uous elements, in contrast to discrete executions of software
programs. Temporal logics initially used in the discrete do-
main must be extended to reflect such shift. Second, Key
techniques in software runtime verification such as runtime
monitor and program instrumentation have to be replaced
by new techniques targeted for model-based design. Last
but not least, we need to devise a process that can be fully
automated so industrial practitioners may potentially take
advantage of this new technique.

In our framework, requirements are encoded in a tempo-
ral logic MEDL to avoid ambiguity. Our model-based ap-
proach integrates a runtime verifier (monitor) to a system
model: we design an algorithm that synthesizes a model-
based monitor from a MEDL script. Next, we instrument a
system model to emit primitive events. Finally, we compose
the instrumented model with the monitor to form a self-
monitoring model. The self-monitoring model may be simu-
lated on an existing model simulator for design-level verifica-
tion and can be used to generate a self-monitoring embedded
program for implementation-level verification. We also de-
veloped a toolkit M2IST to automate the process. M2IST
provides two utilities: M2C synthesizes a monitor from a
MEDL script, and P2C instruments a model and composes
it with the monitor to form a self-monitoring model.



The rest of paper is organized as below. Section 2 pro-
vides a brief introduction to hybrid automaton and the mod-
eling language Charon. Section 3 defines the temporal
logic MEDL and its semantic extension in context of hy-
brid automaton. It also introduces the model-based primi-
tive event definition language mPEDL. Section 4 discusses
the techniques essential for building self-monitoring models.
These techniques include a model-based monitor synthesis
algorithm and a model instrumentation technique. Section
5 discusses design-level and implementation-level runtime
verifications facilitated by our model-based approach. Sec-
tion 6 introduces M2IST, a toolkit we developed to auto-
mate the building process. Finally, in section 7 we conclude
this paper. The proofs in this paper are removed to save
space and may be found in the full version of the paper at
www.cis.upenn.edu/∼tanli/papers/modelmonitor-full.ps

2. PRELIMINARIES
An embedded system generally has both discrete and con-

tinuous behaviors. Such a system is often modeled as a
hybrid automaton [1, 5]. A hybrid automaton is a tuple
{S, V,→, G, W, s0,v0, D, I}, where 〈S, V,→, G, W, s0,v0〉 is
an Extended Finite State Machine (EFSM) with a set of lo-
cations (modes) S, a set of variables V , the transition rela-
tion →, the guards G as predicates over →, the assignments
W setting new values to V upon a transition, the initial
location s0, and the initial valuation v0. There are two ele-
ments which distinguish a hybrid automaton from a EFSM:
D associates each mode with a set of differential equations,
and I imposes on a mode an invariant as a predicate over
V . A state 〈s,v〉 of a hybrid automaton is identified by
its location and valuation of variables. A run of a hybrid
automaton is a hybrid trace, which is a sequence of tuples
ρ = 〈s0,V0, I0〉〈s1,V1, I1〉 · · · , where Vi is the flow of vari-
ables’ values at a mode si and Ii is the duration of ρ’s stay
at si. Vi must also respect si’s differential equations D(si)
and satisfy its invariant I(si).

Hybrid automata can be composed parallel to model the
architectural hierarchy of a system. Composing two hybrid
automata is much like composing two EFSMs. Modes of
the composed automaton M0||M1 are the products of modes
of each component automaton. They also inherit differen-
tial equations and invariants imposed on both M0 and M1.
Hybrid automata may also be composed hierarchically to
model the behavioral hierarchy. In a hierarchical hybrid
automaton, a mode may be another hierarchical hybrid au-
tomaton. Hybrid automata have been used for modeling
and simulating control systems consisting of multiple control
laws. Hybrid-automaton-based modeling languages such as
Charon and their companion tools have been successfully
used to model and develop embedded systems.

Modeling Language Charon Charon [2] is a model-
ing language based on hybrid automata. Charon supports
both structural and behavioral hierarchy by allowing the
parallel and hierarchical composition of hybrid automata.
Charon design environment [2] provides, among other func-
tionalities, a simulator and a code generator. The code
generator can convert a Charon model to C/C++ code.
We choose Charon as the target modeling environment in
which we implement our framework and demonstrate its fea-
sibility and benefits.

〈C〉 ::= [〈E〉, 〈E〉) | 〈C〉&&〈C〉 | 〈C〉||〈C〉 | 〈Q〉2〈Q〉
〈E〉 ::= e | start(〈C〉) | end(〈C〉) | 〈E〉||〈E〉 | 〈E〉&&〈E〉

| 〈E〉when〈C〉
〈Q〉 ::=time(〈E〉) | q | 〈Q〉 ¦ 〈Q〉

where q is a constant, ¦ ∈ {+,−, ∗, /} and 2 ∈ {>, <, =}
are arithmetical and relational operators, respectively

Table 1: The syntax of MEDL[4]

3. SPECIFYING SYSTEM REQUIREMENTS
IN MEDL AND mPEDL

We specify system requirements in the temporal logic
MEDL and the model-based primitive event definition lan-
guage mPEDL. A MEDL script encodes a system require-
ment as temporal patterns of primitive events and an mPEDL
script defines primitive events as changes of states in a hy-
brid automaton. In Section 3.1 we extend the semantics of
the original MEDL [4] from the discrete-time domain to the
continuous-time domain. In Section 3.2 we extend PEDL to
mPEDL in context of hybrid automaton.

3.1 The Temporal Logic MEDL and Its
Semantics Extension

The syntax of MEDL is given in Table 1. The building
blocks of MEDL are events 〈E〉- things that occur at some
time instance; and conditions 〈C〉- facts that last for certain
duration. MEDL is interpreted on sequences of primitive
events, which represent the status changes of a monitored
system. MEDL is originally introduced for specifying re-
quirements of software programs whose executions can be
discretized by steps, and hence primitive events are emitted
on a discrete time line. In the case of hybrid automaton,
however, primitive events are emitted on a continuous time
line: a sequence of primitive events occurring during a hy-
brid trace ρ is denoted by ε(ρ) = 〈E0, t0〉〈E1, t1〉 · · · , where
t0t1 · · · is a strictly increasing sequence on R+, and 〈Ei, ti〉
is a set of primitive events Ei emitted at ti. Definition 1
extends the semantics of MEDL to the continuous time do-
main. We use the following notations: we write Il and Ih

for the start and the end of an interval I. We denote ρ{I}
and ρ(t) for part of a hybrid trace ρ during an interval I and
at a time t, respectively. ρ{I} |= C and ρ(t) |= E indicate
that on the hybrid trace ρ the condition C holds during the
interval I and the event E occurs at the time t. The value
of an expression Q at a time t is denoted by [Q](t).

Most of semantic definitions in Definition 1 are straight-
forward: for instance, a condition C0&&C1 holds when both
C0 and C1 hold. An event E0 && E1 occurs when E0 and
E1 occur simultaneously. The condition [E0, E1) holds from
the event E0 to (not including) the event E1.

Definition 1. Let ρ be a hybrid trace and ε(ρ) = 〈E0, t0〉
〈E1, t1〉 · · · a continuous primitive event sequence occurring
during ρ, then,

• (Conditions)

1. ρ{I} |= C0&&C1 iff ρ{I} |= C0 and ρ{I} |= C1

2. ρ{I} |= C0||C1 iff ρ{I} |= C0 or ρ{I} |= C0.



3. ρ{I} |= ¬C0 iff ρ{I} 6|= C0.

4. ρ{I} |= [E0, E1) iff there exists a I′ such that
I ⊆ I′, ρ(I′l) |= E0, and @t ∈ I′.ρ(t) |= E1.

5. ρ{I} |= Q0 2 Q1 iff ∀t ∈ I.[Q0](t) 2 [Q1](t).

• (Events)

1. ρ(t) |= E0||E1 iff ρ(t) |= E0 or ρ(t) |= E1.

2. ρ(t) |= E0&&E1 iff ρ(t) |= E0 and ρ(t) |= E1.

3. ρ(t) |= start(C) iff limu→t− ρ{[u, t)} 6|= C and
limu→t+ ρ{(t, u]} |= C.

4. ρ(t) |= end(C) iff limu→t− ρ{[u, t)} |= C and
limu→t+ ρ{(t, u]} 6|= C.

5. ρ(t) |= E when C iff ρ(t) |= E and limδ→0+ ρ{[t−
δ, t + δ)} |= C.

6. ρ(t) |= e if ∃i.(t = ti) ∧ (e ∈ Ei).

• (Expressions)

1. [time(E)](t) = t′ such that ρ(t′) |= E and @u ∈
[t′, t).ρ(u) |= E, that is, time(E) records last oc-
currence of E before t.

2. [Q0 ¦Q1](t) = [Q0](t) ¦ [Q1](t).

A condition C holds on ρ iff ρ([0,∞)) |= C and an event E
occurs on ρ iff ∃t.ρ(t) |= E.

MEDL as a script language has a richer syntax. For in-
stance, a MEDL script P has a special type of events called
alarms. The occurrence of an alarm indicates the violation
of safety properties in P. Therefore, a hybrid automaton M
violates P if an alarm raises on a hybrid trace of M .

3.2 Model-Based Primitive Event Definition
Language mPEDL

We define primitive events in the Model-Based Primi-
tive Event Definition Language mPEDL, which extends the
PEDL [4] in context of hybrid automaton. Figure 1 shows
an mPEDL script used in our case study to define primi-
tive events on a hybrid automaton model of a robotic dog
chasing a ball. An mPEDL script consists of the following
sections.

• Export section declares primitive events.

• Monitored object section declares variables and tran-
sitions being monitored. The names of these variables
and transitions reflect the structural hierarchy of the
target hybrid automaton. For instance, dog.vision
refers to the variable vision defined at the top-level
mode in a model dog.

• Condition section defines conditions as predicates over
the monitored variables

• Event section defines primitive events as changes of
predicates or conditions. For instance, the events visi-
ble and invisible are defined as on and off of the pred-
icate dog.vision > 10.

Overall, the mPEDL script in Figure 1 defines four events:
lost, track, visible, and invisible. The event lost (track) oc-
curs when the dog moves away from (close to) the red ball;
the event visible (invisible) occurs when the ball becomes
visible (invisible).

export event isVisible, isInvisible, \

lost, track;

monobj int dog.vision,dog.theta,dog.x;

condition tracking=(dog.theta-dog.x<10) \

&&(dog.theta-dog.x>-10);

event isVisible= start (dog.vision>10);

event isInvisible= end (dog.vision>10);

event track = start (tracking);

event lost = end (tracking);

Figure 1: A sample mPEDL script

T0 : P = idC ∧ VC 6= 1 ∧ VE1 = t?VC := 1, VCl := t, P := P + 1

VC := 0, VCl := t, P := P + 1

P 6= idC

T1 : P = idC ∧ (VC 6= 1 ∨ VE2 6= t) ∧ (VC = 1 ∨ VE1 6= t)?P := P + 1

T2 : P = idC ∧ VC = 1 ∧ VE2 = t?

Figure 2: Translation rule for C = [E1, E2)

4. BUILD SELF-MONITORING MODELS
In traditional runtime verification, runtime verifier is in-

tegrated into the programming language’s runtime environ-
ment. In context of model-based design, this would mean
that a model simulator need be modified to include a run-
time verifier, which is often costly if not all impossible, since
many model simulators contain proprietary code not in the
public domain. In [10] we extend a monitored model to in-
clude a model-based runtime verifier (monitor). The model-
based monitor checks the primitive events emitted by an
instrumented model. Here we formalize the process in [10]
and introduce an algorithm that can synthesize a monitoring
automaton M from a MEDL script P.

4.1 Synthesize Model-Based Monitor from
MEDL

Synthesis is carried out in a compositional fashion. Each
term (event, condition, or expression) is related to some
variables which record its history and value. For instance,
Each condition C has two variables: VC for C’s current value
and VCl for the last time C changes its value. Each term T is
translated to an automaton MT which updates T ’s related
variables upon incoming primitive events. We assign each
term automaton an id based on the term’s dependency in
P. All the term automata shares a token variable P which,
together with ids, implement a Round-Robin ring: a term
automaton MT is enabled only if P matches MT ’s id. Only
by then all the variables related to the terms T depends on
have already been updated. Figure 2 lists the translation
rule for C = [E1, E2) as an example. The rest of rules are
similar and may be found in the full version of the papers.

The monitoring automaton M is a parallel composition
of term automata and an engine automaton, which checks
incoming primitive events and passes the token to the first
term automaton on the ring to start event processing. In-
terested readers may refer to the full version of the paper
for the details of translation and the proof for Theorem 1.

Theorem 1. Let M ||M be a self-monitoring hybrid au-
tomaton whereM is the monitoring automaton for the MEDL



script P, ρ be a hybrid trace of M , and ε(ρ) = 〈E0, t0〉〈E1, t1〉
· · · be a primitive event sequence occurring during ρ, then,

(1) (Guaranteed event detection). For every event E in P,
VE = ti sometime on ρ iff ρ(ti) |= E.

(2) (Guaranteed condition checking). For every condition
C in P, VC = 1 sometime on ρ iff there exists an
interval I such that ρ{I} |= C.

4.2 Model Instrumentation
To emit primitive events, the original system model has

to be instrumented. An event is emitted via a shared vari-
able in the instrumented model which records its last oc-
currence. We propose an instrumentation technique called
model augmentation, which extends the original model with
an observer. This way the instrumentation introduces little
disturbance to the structure of the original model.

The observer is a parallel composition of a collection of a
simple hybrid automata, each of which represents a predi-
cate(condition) in the mPEDL script and contains only two
models: one for the case that the condition is true; and the
other for the case it is false. The transitions between two
modes emit primitive events by updating the related event
variables.

5. MODEL-BASED RUNTIME
VERIFICATION

As one of its benefits, our approach support both design-
level and implementation-level runtime verification using ex-
isting model-based design tools: a self-monitoring model
can be simulated for design-level verification on an exist-
ing model simulator; and it may also be used by an existing
model-based code generator to generate a self-monitoring
embedded program, which can execute on the target hard-
ware for implementation-level verification.

In Section 4 we developed an automated process to synthe-
size a model-based monitor and instrument a system model.
Parallel composing the synthesized monitor with the instru-
mented model forms a self-monitoring model. When sim-
ulated, the self-monitoring model emits events that are in-
tercepted by the integrated monitor. Conditions and events
can be observed by changes of their related variables’ value.
For instance, a value change on an alarm variable indicates
an occurrence of the alarm. When this happens, we know
that the model fails design-level verification.

Since a self-monitoring model itself is also a model in the
chosen modeling language, it can be used by an existing
model-based code generator to produce an embedded pro-
gram. The generated program is already instrumented on
model level and has an integrated monitor. During its exe-
cution on the target hardware, the generated self-monitoring
embedded program monitors itself besides its normal func-
tions. On the implementation level, however, we generally
don’t have access to real-time values of variables so we can-
not check events or conditions by simply looking at values of
their related variables. Instead, we use event (alarm) vari-
ables’ values to trigger outputs on the target hardware. In
this way, we will know if an event occurs and when.

6. TOOLS SUPPORT
We developed M2IST, a toolkit that implemented the

monitor synthesis algorithm in Section 4.1 and the model

instrumentation technique in Section 4.2. M2IST consists of
the model instrumentation tool P2C and the model-based
monitor synthesis tool M2C. It provides a “push-button” ap-
proach to build a self-monitoring model from a system model
in Charon and its requirements in MEDL and mPEDL.
More information about M2IST may be found at [6].

M2IST has been successfully used in several case studies
including the one on SONY AIBO Robot, in which we use
P2C to instrument a Charon model of the robot chasing
a moving ball, and use M2C to synthesize a model-based
monitor from requirements encoded in MEDL and mPEDL.
We simulate the self-monitoring model on the Charon sim-
ulator to observe when the robot fails to catch the ball. The
self-monitoring model is also used to generate an embedded
program executed on the SONY AIBO Robot. The alarm
variable is used to trigger a flashing light on the robot to
indicate failure during execution.

7. CONCLUSIONS
We proposed an model-based runtime verification frame-

work with temporal logic requirements to monitor embed-
ded system models and its implementations. Our frame-
work has several benefits: first, using temporal logics MEDL
and mPEDL allows a lucid and rigid representation of re-
quirement specifications. Second, the process of building
self-monitoring models can be fully automated by monitor
synthesis and model instrumentation techniques introduced
in Section 4. Finally, our model-based framework provides
both design-level and implementation-level runtime verifica-
tion by using existing model-based development tools. We
also developed a toolkit M2IST to support our framework.
M2IST can build a self-monitoring model from a Charon
model and its requirements in MEDL and mPEDL.
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