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ABSTRACT
We propose a model-based framework for developing a self-
adaptive embedded program, which monitors its own execu-
tion and reconfigures itself at runtime to avoid failure and
improve performance. Our approach uses formal methods
at different design stages to reduce the complexity of devel-
oping a self-adaptive embedded program. In our framework
system requirement is rigidly encoded in temporal logics,
and the original embedded system behavior is captured in
a hybrid automaton-based model. We introduce the recon-
figuration specification language REDL to specify reconfig-
uration requirements, and define a formal semantics of re-
configuration in context of hybrid automaton. Using formal
methods also helps automate design and implementation:
we use model-based runtime verification techniques intro-
duced in [19] to extend a system model to a self-monitoring
model based on its temporal logic requirements; we then ex-
tend the self-monitoring model with a reconfiguration mech-
anism based on its REDL specification. Our approach works
with models, and hence it may be incorporated into exist-
ing model-based design workflow: the resulting self-adaptive
model can be analyzed using an existing model simulator
and may be used to generate a self-adaptive embedded pro-
gram for targeted platform.

1. INTRODUCTION
Since their debut in the early 60s, embedded systems play

an indispensable role in many mission-critical applications
such as NASA Apollo mission. They are expected to func-
tion correctly under often harsh and sometimes even unex-
pected environment. Many embedded systems either lack
the interfaces for software upgrade, or their missions inher-
ently require real-time adaptivity [13]. There are growing
interests in self-adaptive embedded software for applications
such as Unmanned Aerial Vehicles (UAV), DARPA in 1997
proposed an initiative which calls for more research on self-
adaptive software. Two key features of a self-adaptive soft-
ware are (1) the ability to evaluate its own execution; and
(2) the ability to reconfigure itself based on its execution
status. The idea of self adaption may be dated back to the
adaptive control theory in the 1960s and its biggest success
is still limited to the control theory field. Despite of its mer-
its, developing self-adaptive embedded software turns out to
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be notoriously difficult. Self adaption adds one more dimen-
sion of complexity to system design, which makes it much
harder to implement and validate a self-adaptive system de-
sign. Just as a yardstick on how hard the problem could
be, it took the control society over 20 years to prove the
stability of self-adaptive controllers. Lack of a formal pro-
cess also contributes to difficulty in developing high quality
self-adaptive embedded software.

We propose a formal approach to rigidly encode reconfig-
uration requirement and automate most part of self-adaptive
embedded program development. Figure 1 shows an overview
of our approach. We introduce the reconfiguration configu-
ration language REDL to formally specify requirements for
reconfiguration, and use the temporal logic MEDL to specify
events triggering reconfiguration. The approach uses model-
based runtime verification technique we developed in [17]
to extend a system model with self-monitoring capability.
Events generated by the self-monitoring model are used to
trigger reconfiguration. The approach provides a formal pro-
cess to further extend a self-monitoring model with recon-
figuration capability based on a REDL specification. Our
approach makes the following contributions:

1. We introduce the reconfiguration configuration lan-
guage REDL and define its semantics in context of hy-
brid automaton-based models. As a replacement for
ad-hoc specifications, a REDL script rigidly defines
reconfiguration requirements. REDL enables formal
analysis on reconfiguration requirements and helps au-
tomate the process of building a self-adaptive system.
We formalize a process that extends a system to a self
-adaptive model based on its REDL specification.

2. Our approach can be integrated into existing model-
based design workflow. Our approach transforms a
regular design to a self-adaptive design based on recon-
figuration requirements. The resulting self-adaptive
model can be analyzed using existing model-based tools
such as a model simulator. It can also be used to gen-
erate self-adaptive embedded systems using an existing
model-based code generator.

3. We use model-based runtime verification we developed
in [17] to build runtime evaluation mechanism. We
specify system requirements in the temporal logic MEDL
and define primitive events - the meta events directly
tied to the status of an embedded system - in the event
definition language mPEDL. MEDL identifies a trig-
gering event as a temporal pattern exhibited by se-
quences of primitive events. The expressive power of
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Figure 1: A model-based framework for building
self-adaptive embedded programs

MEDL goes beyond simple failure detection in most
self-adaptive system implementation. It allows us to
define triggering events with subtle temporal patterns.
Model-based runtime verification also provides a tool
[11] to automate the process of building a self-monitoring
model from the original system model.

The rest of paper is organized as follows. Section 2 pro-
vides a brief introduction to hybrid automaton models for
embedded systems. Section 3 discusses model-based run-
time verification which facilitates on-the-fly evaluation of
system status. Section 4 introduces the reconfiguration def-
inition language REDL and its semantics in context of hy-
brid automata. Section 5 discusses the technique of extend-
ing a model with reconfiguration mechanism specified in a
REDL script. Section 6 shows how our model-based ap-
proach can be incorporated into an existing design workflow
to validate the design and facilitate automatic generation of
a self-adaptive embedded program from the model. Finally
Section 7 concludes this paper.

Related works. The idea of self adaption may be dated
back to adaptive control theory in 1960s [12]. Until re-
cently, ad-hoc approaches are still prevalent in self-adaptive
software development. DARPA announced its initiative on
self-adaptive software in 1997 which helped bring research
attention to this important subject. In [13] authors outlined
in a casual and informal way an infrastructure to support
self-adaptive software but lacked a detailed account on tech-
niques necessary to realize such infrastructure, while here we
formalize a process from encoding requirements to finally
building a self-adaptive embedded system. In [6] authors
used StateChart to model adaptive logic, which they called
a “supervisory-level” layer. Here we model the adaptive
logic using hybrid automata, which allows us to work with
the continuous-time domain. In [16] Strunk and Knight pro-
posed assured reconfiguration. Their approach emphasized
on architecture level and has a coarse-grained view of sys-
tems as a cluster of fail-stop computers. While their main

interests were to formally assure reconfiguration for ultra-
dependable systems and their abstraction made assured sys-
tems discrete and hence suitable for formal analysis, we tar-
get at embedded system design with continuous dynamics.
We also provide a formal engineering approach which can
be integrated into model-based design paradigm.

The real-time evaluation part of our framework is based
on our model-based runtime verification technique. Runtime
verification [5, 7] is to on-the-fly check the execution of a
software program against its formal specification. In [18] we
extended it to model-based design. Instead of using events
emitted by a runtime verifier to indicate errors, we now use
them to trigger reconfiguration.

2. PRELIMINARIES
An embedded system usually consists of digital compo-

nents and analog devices. It has both discrete and continu-
ous behaviors. Formally, such a system is modeled as a hy-
brid automaton [1, 10]. A hybrid automaton is an extension
of traditional extended finite state machine (EFSM) with
continues dynamics. Formally a hybrid automaton is a tu-
ple A = {S, V, T, G, W, D, I, h0}. Just like its discrete coun-
terpart, a hybrid automaton has a set of locations(modes)
S, a set of variables V , a set of transitions T , and an ini-
tial state h0. A transition t ∈ T is also associated with a
predicate over V as its guard G(t) and an assignment ac-
tion W (t) which updates V ’s values upon the transition t.
Unlike an EFSM, a hybrid automaton associates each state
s with a set of differential equations D(s) and an invariant
I(s). D(s) specifies how variables change values when s is
active, and the invariant I(s) must hold when the control
stays at s.

A state 〈s,v〉 of a hybrid automaton shall specify the ac-
tive mode s and the current valuation of V . Unlike tradi-
tional finite state machines that work in the discrete-time
domain, hybrid automata are interpreted in the continuous-
time domain. A trace of a hybrid automaton A can be ex-
pressed as a sequence ρ = 〈s0,V0, I0〉〈s1,V1, I1〉 · · · , where
Ii is the time interval when the control stays at si, and
Vi : Ii → (V → R) describe how variables change their
value during Ii. Interested reader may refer to [19] for a
more detailed explanation of hybrid automaton.

Hybrid automata can be composed parallel. Modes of the
composed automaton A0||A1 are the products of modes of
each component automaton. When the control stays in a
mode 〈s, s′〉, the flow of variables’ values must respect dif-
ferential equations and invariants with the state s of A0 and
with the state s′ of A1. Hybrid automata may also be com-
posed hierarchically. In a hierarchical hybrid automaton, a
mode may be another hierarchical hybrid automaton.

Hybrid automata have been widely used for modeling and
simulating embedded systems. Figure 2 shows a hierarchical
hybrid automaton modeling a SONY AIBO robot tracking
a moving ball. θ is the angle of the ball, x is the angle of
the robot’s head, and β is the visibility of the ball. When
the ball is visible (β > 10), the robot attempts to chase the
ball, as modeled by a differential equation ẋ = k · (θ − x).
If the ball is invisible (β ≤ 10), the control switches to the
left-top mode, which in turn has two sub-modes. In the left
sub-mode, the robot moves its head toward its right at the
speed of 10 deg./sec. The right sub-mode is symmetric to
the left sub-mode. The robot simply swings its head if it
cannot see a ball.
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Figure 2: Hierarchical hybrid automaton modeling
a SONY AIBO robot tracking an object.

〈C〉::= [〈E〉, 〈E〉) | 〈C〉&&〈C〉 | 〈C〉||〈C〉 | 〈Q〉2〈Q〉
〈E〉::= e | start(〈C〉) | end(〈C〉) | 〈E〉||〈E〉 | 〈E〉 && 〈E〉

| 〈E〉 when 〈C〉
〈Q〉::= time(〈E〉) | q | 〈Q〉 ¦ 〈Q〉

where q is a constant, e is a primitive event, ¦
∈ {+,−, ∗, /} and 2 ∈ {>, <, =} are arithmetical
and relational operators, respectively [7].

Table 1: The syntax of MEDL

Modeling Language Charon. Charon [2] is a mod-
eling language based on hybrid automata. Charon sup-
ports both behavioral and structural hierarchy by allowing
the concurrent and hierarchical composition of hybrid au-
tomata. Charon design environment provides, among other
functionalities, a simulator and a code generator. The code
generator can convert a Charon model to C/C++ code.
We choose Charon as the modeling environment in which
we implement our framework and demonstrate its benefits.

3. MODEL-BASED RUNTIME VERIFICA-
TION

To detect reconfiguration condition at runtime, we use
model-based runtime verification technique introduced in
[19]. The technique uses the event-based temporal logics
MEDL and mPEDL to encode system requirement. It ex-
tends a hybrid automaton model to a self-monitoring model
based on MEDL and mPEDL specifications. In our frame-
work, events generated by a self-monitoring model are used
to activate reconfiguration mechanism.

3.1 The Temporal Logic MEDL
The syntax of MEDL is given in Table 1, where E and C

denote events and conditions. The building blocks of MEDL
are events - things that occur at some time instance and
conditions - facts that last for certain duration. MEDL is

interpreted over a sequence of primitive events. Primitive
events represent the status changes of a monitored system.
Their precise definitions are given in mPEDL, which will be
introduced shortly after. We use the following notations: we
denote ρ{I} and ρ(t) for part of a hybrid automaton trace ρ
during an interval I and at a time t respectively. ρ{I} |= C
states that a condition C holds true on a hybrid automaton
trace ρ during some interval I, and ρ(t) |= E indicates that
an event E occurs at time t on ρ.

MEDL initially was introduced to specify requirements
for Java programs [7], and hence originally MEDL was in-
terpreted over discrete execution steps. In [17] we extend
its semantics to the continuous time domain. For instance,
the semantics of a condition E when C is defined as,

ρ(t) |= E when C iff ρ(t) |= E and lim
δ→0+

ρ{[t− δ, t+ δ)} |= C

That is, the event E when C occurs if E occurs and at the
same time C holds. start(C) and end(C) defines an event as
the start and the end of the condition C. MEDL also uses
expressions to help track the history of an execution. For
instance, time(E) specifies the time when an event E occurs.
For the complete semantics of MEDL in the continuous time
domain, readers may refer to [17].

ReqSpec
buildin event clock;
import event appear, disappear, track, lose;
import event approach, leave, almostLose;
export event loseBall, relax, catchUp;
condition visible= [appear, disappear);
event loseTrack = lose when visible;
alarm loseBall =start (time(loseTrack)-time(appear)>50);
/* added for self adaptation */
event catchUp = almostLose when visible;
condition close = [approach, leave) when visible;
event relax= start(time(clock) when close \

-time(start(close))>3);
End

Figure 3: The MEDL script Ma for the AIBO exam-
ple

MEDL as a script language has a richer syntax. In a
MEDL script, primitive events are referred as imported events.
There is also a special type of events called alarms. An alarm
indicates the violation of safety properties. Therefore, a hy-
brid automaton trace, marked by a sequence of primitive
events, is considered to satisfy a MEDL script if no alarm
is raised. A MEDL script also defines exported events which
are visible to the outside. These events may be used to
trigger reconfiguration.

Figure 3 gives a MEDL script which specifies the require-
ments for the AIBO example in Figure 2. The script requires
the robot to track a ball when it is visible. An alarm loseBall
is raised if the robot fails its mission.

3.2 Model-Based Primitive Event Definition
Language mPEDL

In our framework primitive events are defined in the Model-
Based Primitive Event Definition Language mPEDL, which
is extended from PEDL [9] in context of hybrid automata.
A primitive event can either be a transition or a change of
some predicate’s value. Figure 4 shows an mPEDL script



MonScr
export event appear, disappear, lose;
export event approach, leave, almostLose;
monobj int dog.beta,dog.theta,dog.x;
/* Event definition */
event appear= start (dog.beta>10);
event disappear= end (dog.beta>10);
event lose = start(abs(dog.theta-dog.x)>20);
event approach = start(abs(dog.theta-dog.x)<5);
event leave = end(abs(dog.theta-dog.x)<5);
event almostLose = start(abs(dog.theta-dog.x)>15);

End

Figure 4: The mPEDL script Pa for the AIBO ex-
ample

for the AIBO example. It has two sections.

• Monitored objects declare shared variables and transi-
tions being monitored.

• Event section defines primitive events as transitions or
changes of predicates’ values. For instance, the events
appear and disappear indicate the start and the end
of the predicate dog.beta > 10.

mPEDL bridges monitored systems and MEDL. It defines
interesting changes of system status as primitive events.
The mPEDL script in Figure 4 defines six primitive events.
These primitive events are taken by the MEDL script in Fig-
ure 3 to compute conditions and non-primitive events which
identifies more complicate temporal patterns of a trace.

3.3 Build Self-Monitoring Model
In model-based runtime verification framework [19, 17] we

automate the process of building a self-monitoring model
by first instrumenting the original system model and then
extending it with a model-based monitor synthesized from
a MEDL script. The embedded model-based monitor emits
events via share variables, which can be used to activate
reconfiguration mechanism in Section 4.

3.3.1 Model Instrumentation
To facilitate runtime verification, a system model must be

instrumented to emit events defined in an mPEDL script.
Primitive events are emitted via shared variables: for each
primitive event we introduce a variable that records last
occurrence of the event. We need to consider two cases when
instrumenting a model,

1. To emit primitive events defined as changes of a pred-
icate’s value, the system model is composed with an
observer. An observer is the parallel composition of a
collection of two-mode automata. Each mode stands
for either true or false of a predicate. The transitions
between these modes emit primitive events by updat-
ing the related event variables. Figure 6 shows the
model in Figure 2 after instrumentation.

2. To emit events defined on transitions, the assignment
actions of these transitions are extended to update the
related event variables.

3.3.2 Synthesize Model-Based Monitors

T0 : P = idC ∧ VC 6= 1 ∧ VE1 = t?VC := 1, VCl := t, P := P + 1

VC := 0, VCl := t, P := P + 1

P 6= idC

T1 : P = idC ∧ (VC 6= 1 ∨ VE2 6= t) ∧ (VC = 1 ∨ VE1 6= t)?P := P + 1

T2 : P = idC ∧ VC = 1 ∧ VE2 = t?

Figure 5: Translation rule for C = [E1, E2)

Synthesizing a model-based monitor from a MEDL script
is carried out in a compositional manner. Each term (con-
dition, expression, or non-primitive event) is translated to
a term automaton. Figure 5 shows the translation rule for
the case C = [E1, E2). Each event E is related to a variable
VE that records the last occurrence of E. Each expression
Q is also related to a variable VQ that stores its current
value. Each condition C is associated with two variables: VC

records C’s value and VCl records the last time C changes
its value. A term automaton updates the related term vari-
ables. The monitor also implements a token-passing process:
the automata for a term T is activated only after automata
for terms that T depends on have been activated. A model-
based monitor is the parallel composition of term automata
and an engine automaton. The engine automaton checks
incoming primitive event and passes the token to the first
term automaton on the ring to start event processing.

An instrumented model is composed with a model-based
monitor to form a self-monitoring model. During simula-
tion, a self-monitoring model performs runtime monitoring
in addition to its original behavior. The occurrences of an
event E are indicated by changes of the event variable VE ’s
value. Theorem 1.a shows that the size of additional moni-
toring mechanism is linear to the size of MEDL and mPEDL
requirements, and Theorem 1.b states that the computation
complexity of a synthesized monitoring automaton is linear
to the size of the MEDL script.

Theorem 1. Let M be the monitoring automaton synthe-
sized from the MEDL script M, and A′ be an instrumented
version of a hybrid automaton A for the mPEDL script P,

a. |M ||A′| = O(|M|+ |P|)
b. The update of variables in M can be done in O(|M|).
Figure 7 shows a simulation trace of a self-monitoring

model for the AIBO example with the MEDL requirement
Ma and the mPEDL script Pa. We use a model-based tester
[18] to model a moving ball whose position is fed to the self-
monitoring model via input variables. Figure 7.(a) shows the
ball’s movement. It swings slowly before the robot during
initial 10 seconds, then moves faster in next 10 second, and
slows down again. Figure 7.(b) shows the relative angle be-
tween the ball and the robot’s head. The simulation reveals
a failure: the change of the event variable VloseBall’s value at
the 10th second indicates that the alarm loseBall occurs. It
is because the robot doesn’t move fast enough when the ball
starts to accelerate. Note that the latency factor k in the
robot model decides how aggressively fast the robot tracks
the ball. A proper fix to the problem requires to let the
robot on-the-fly reconfigure k at runtime.

4. REDL: A RECONFIGURATION DEFI-
NITION LANGUAGE
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Figure 6: Instrument the AIBO robot model.

To formally specify reconfiguration - such as when it shall
take place and what it shall achieve - we introduce the Re-
configuration Definition Language REDL. In conjunct with
MEDL and mPEDL, REDL specifies reconfiguration require-
ments for embedded systems. Having a formal reconfigura-
tion specification for embedded systems has several impor-
tances. A formal reconfiguration specification adds one more
dimension to a formal system specification. It defines what
needs to be done, shall a system be failing, to save the sys-
tem and improve its performance. A formal reconfiguration
specification also provides the basis for mechanically extend-
ing a system design with reconfiguration capability and the
possibility of applying formal verification techniques to re-
configurable embedded systems.

4.1 Syntax
A REDL script defines the requirement for reconfigura-

tion. Table 2 gives the syntax of REDL. A REDL script is
a list of reconfiguration scenarios. A scenario 〈T 〉 specifies
the event e triggering a reconfiguration and a list of actions
〈B〉. Each action 〈A〉 defines its precondition 〈C〉 and post-
condition 〈D〉. A proposition in the precondition 〈C〉 can
be either a set of states 〈S〉, which holds when a state in 〈S〉
becomes active, or a predicate p over a set of variables V
defined in a targeted system model. Besides the triggering
event, the precondition must hold before a reconfiguration
action can take place. The postcondition 〈D〉 specifies which
state the reconfiguration ends up with, an optional worse-
case execution time, and an optional predicate which must
be satisfied after the reconfiguration.

Figure 8 shows the reconfiguration script for the AIBO
robot model. k in the model is a reconfigurable parame-
ter controlling how aggressively the robot tracks a ball. A
higher k means a lower risk of losing the ball, but also costs
more energy to operate the robot. A higher k is also a cause
of “jittering”, in which the robot constantly overshoots the
target ball. The purpose of reconfiguration is to adjust k
based on runtime situation so the robot can maintain the
optimal operation. We start with a formal definition of sub-
optimal situations which reconfiguration shall respond to.
In Figure 3 we define the events relax and catchUp in the
MEDL script, and supporting primitive events approach,
leave, and almostLose in the mPEDL script in Figure 4.
Casually speaking, the event catchUp indicates that the

〈R〉 ::= 〈T 〉; 〈R〉 | 〈R〉
〈T 〉 ::= trigger e : 〈B〉
〈B〉 ::= 〈A〉; 〈B〉 | 〈A〉
〈A〉 ::= if 〈C〉 then 〈D〉
〈C〉 ::= 〈C〉&&〈C〉 | 〈C〉||〈C〉 | 〈S〉 | p
〈S〉 ::= {〈Sl〉} | {}
〈Sl〉 ::= s, 〈Sl〉 | s
〈D〉 ::= 〈F 〉; 〈D〉 | 〈F 〉
〈F 〉 ::= s 〈P 〉
〈P 〉 ::= 〈Ct〉〈Cp〉
〈Ct〉 ::= within t | ε
〈Cp〉::= under p | ε

where s is a state, and p is a predicate over a set
of variable V , and e is an event.

Table 2: The syntax of REDL

robot lags significantly behind the ball and hence a more
aggressive tracking is necessary to avoid losing the ball. The
event relax indicates that the robot follows a ball too close
and hence it can slow down to conserve energy and avoid
jittering. Note that neither catchUp nor relax is a sim-
ple measurement of angle between the ball and the robot.
They use temporal operators supplied by MEDL to iden-
tify more subtle temporal patterns. For instance, the event
catchUp also tests whether a ball is visible, and the event
relax waits three seconds after the robot enters within the
5 degree range of the ball. This three-second delay is crucial
to the system’s stability because a premature relax event
makes the robot slow down when the ball already starts to
pick up its speed, which makes the robot bounce between
low and high speeds.

4.2 A Formal Semantics for Reconfiguration
A REDL script specifies the requirement for reconfigura-

tion. Reconfiguration alters the behavior and structure of
an embedded system. Semantically reconfiguration changes
the courses of original system traces. Structurally recon-
figuration extends the original system with a collection of
new transitions, new modes, and other changes to facilitate
runtime self adaption. A trace of a self-adaptive system has
two different kinds of subsequences: subsequences exhibiting
the original system behavior when reconfiguration is not ac-
tivated; and subsequences in which a reconfiguration occurs.
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Figure 7: Simulate the self-monitoring model with
k = 10

The latter sequence must satisfy pre- and post- conditions
of reconfiguration requirement. This causal definition is
formalized in Definitions 1 and 2.

Definition 1. Let R be a REDL script and B be a self-
adaptive extension of a hybrid automaton, a trace ρ of B
satisfies R if ρ can be partitioned to a set of subsequences
Q ∪O as follows,

1. For each subsequence ρ{[ti, ti+1)} ∈ Q with h = 〈s,v〉
as its start state and h′ = 〈s′,v′〉 as its final state,
there is a reconfiguration action in R,

trigger e: if S and P then enter s′ under P ′ within t

such that ρ(ti) |= e, s ∈ S, P (v) = true, P ′(v′) =
true, and ti+1 − ti ≤ t.

2. For each segment ρ{[ti, ti+1)} ∈ O with s as its start
state and vt as its initial valuation of the variables V ,

(a) There doesn’t exist a time t ∈ [ti, ti+1) and an
reconfiguration action in R

trigger e: if S and P then enter s′ under P ′ within t

such that P (vt) = true, ρ(t) |= e, and s ∈ S.

(b) ρ{[ti, ti+1)} is a prefix of a trace of the automa-
ton At = {S, V, T, G, W, D, I, 〈s,vt〉}. At is a
variance of A with a new starting state 〈s,vt〉.

ReqExp

import event catchUp, relax;

Trigger catchUp:

if {s2} and k<50 then

enter s2 under k=50 within 0;

Trigger relax:

if {s2} and k>10 then

enter s2 under k=10 within 0;

End

Figure 8: The reconfiguration script Ra for the
AIBO model

Definition 1 partitions a trace of a self-adaptive model to
two different types of subsequences: Q, the subsequences
where reconfiguration actions take place; and O, the subse-
quences which preserve the original system behavior. Defi-
nition 1.1 states that a subsequence ρ{[ti, ti+1)} in Q com-
pletes a reconfiguration action: a triggering event occurs
at ti and the valuation at ti satisfies the precondition. All
the postcondition and the time constraints shall be satis-
fied after the reconfiguration. Definition 1.2 requires that a
reconfigured system shall perform exactly same as the orig-
inal system if no reconfiguration action is triggered: 1.2.(a)
states that a subsequence ρ{[ti, ti+1)} ∈ O doesn’t satisfy
the precondition of any reconfiguration actions, and hence it
does not engage in any reconfiguration activities; and 1.2.(b)
requires that such subsequence shall respect the semantics of
the original system, i.e., it behaves as if the original system
starts with the same initial state as ρ{[ti, ti+1)}.

Definition 2. Let B be a self-adaptive extension of A, B
satisfies a REDL script R if every trace of B satisfies R.

5. BUILD SELF-ADAPTIVE MODELS
A complete set of reconfiguration requirements in our frame-

work is a 〈R,M,P〉, which consists of a REDL script R, an
MEDL script M defining triggering events, and an mPEDL
script P specifying supporting primitive events. A REDL
script R only specifies the requirements for reconfiguration
actions, but doesn’t mandate the actual implementation. A
designer can choose his own implementation as long as it sat-
isfies Definitions 1 and 2. To take advantage of model-based
runtime verification techniques we introduced, we extend the
original system model to a self-monitoring model based on
M and P. We then use the following procedure to extend it
into a self-adaptive model: for each reconfiguration action,

trigger e: if S and p then enter s’ under p’ within t

and each mode s ∈ S,

(1) Add a transition t leaving s with G(t) = (Ve > 0 ∧ p)
as its guard and W (t) = {Ve := 0} as its assignment
action.

(2) Add ¬p ∨ Ve ≤ 0 to s’s invariant set I(s).

(3) Add a transition t′ entering s with W (t′) = p′ as its
assignment action.

(4) Add customized reconfiguration steps connecting t to
t′, and verify the time constraints.
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Figure 9: The self-adaptive model for SONY AIBO example

Note that Ve > 0 indicates that the event e occurs. Step
(1) adds a transition t which checks if a triggering event
presents and the precondition of a reconfiguration action is
satisfied. Step (2) will make the transition t urgent: the in-
variant added to s is the negation of t’s guard. This forces
the model to take the transition t if t is enabled. Step (3) en-
forces the post-condition after the reconfiguration. Finally,
Step (4) allows a user to add customized reconfiguration
steps. The customized steps should be checked against the
worst-case execution time constraint. Verifying time con-
straints is essentially a reachability problem consisting of
only those new transitions and modes from s to s′. Such
problem may be solved using, for example, model-checking
tools [4, 8] for timed systems.

Figure 9 gives an example of a self-adaptive model, which
is extended from the model in Figure 2 under the require-
ment 〈Ra,Pa,Ma〉. It satisfies the REDL script in Figure
8. At the step (1) we add two new transitions T ′0 and T ′1 to
handle events relax and catchUp, respectively. For instance,
the guard of T ′0 checks the event catchUp and precondition
k < 50. The guards of both T ′0 and T ′1 are negated and
added to the invariant of S2 to make T ′0 and T ′1 urgent. At
the step (3) we add assignments to T ′0 and T ′1 to force the
post-condition. Since either T ′0 or T ′1 is taken instantly, the
worst-case execution time constraint is clearly satisfied.

One advantage of our proposed model-based self-adaptive
framework is its scalability. First, the size of additional tran-
sitions and modes introduced by the above procedure, ex-
cept optional customized reconfiguration steps, is linear to
the size of the REDL script; second, the framework also
benefits from the scalability of underlying model-based run-
time verification technique. Theorem 1.a shows that the
size of model-based runtime verification mechanism is linear
to its requirements. Additional mechanism to support self
adaption is linear to the size of the reconfiguration require-
ment set 〈R,M,P〉. By Theorem 1.b, the computational
cost of runtime verification is linear to the size of require-
ment script, and the delay introduced by reconfiguration is
bounded by worst-case execution time constraints in P.

6. FROM MODELS TO SELF-ADAPTIVE
EMBEDDED PROGRAMS

We established a model-based framework for self-adaptive
embedded system design by first building self-monitoring
models and then extending it with reconfiguration mech-

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30

time (seconds)

θ-x
lostBall

Figure 10: Simulate the self-adaptive model in Fig-
ure 9

anism. Models at each construction step are written in
the exactly same modeling language as the original system
model, and hence existing model-based design tools can be
used to simulate these models and produce embedded codes
with some additional benefits: a self-monitoring model also
performs runtime verification[17] during simulation; and an
self-adaptive model can be used to generate self-adaptive
embedded program using an existing model-based code gen-
erator. We follow our case study on SONY AIBO robot to
discuss these benefits.

About the case study. The target hardware platform in
our case study is the SONY AIBO robotic dog [15]. AIBO
consists of both analog devices for inputs and outputs, and
a digital control system. The control system is an embedded
computer based on a MIPS microprocessor running at 192
MHz, and equipped with 32 MB internal memory. The oper-
ating system is SONY’s propriety object-oriented real-time
operating system known as Aperios.

In Section 3.3.2 the simulation of a self-monitoring model
already reveals a problem with the fixed latency factor k.
As a solution, we develop a self-adaptive model in Fig-
ure 9. Figure 10 shows the simulation trace for the self-
adaptive model. The self-adaptive system model evaluates
its own execution and adapt k to optimize performance.
The self-adaptive system effectively avoids raise of the alarm
loseBall.



Original Self-monitoring Self-adaptive
CHARON 221 541 552
Simulink 1613 3017 3361

C++ code 551 836 860
Binary 466,555 469,461 470,063

Table 3: The size of the self-adaptive embedded pro-
gram for the AIBO example

In [18] we model AIBO’s control program in Charon
and extend it with runtime verification capability. We also
use a model-based generator developed in [3] to generate
C++ code. We take a slight different route in this case
study, we extend the control system model to a self-adaptive
model also in Charon; we then translate Charon models to
Simulink/Stateflow [14] and use the real-time workshop to
generate embedded codes, since the real-time workshop has
a better hardware target support. Table 3 shows the code
size for the different extensions of original system model.
All the sizes are measured in lines, except for binary code,
which is in bytes. The self-monitoring model is generated
automatically using the M2IST toolkit [11].

7. CONCLUSIONS
A self-adaptive system evaluates its own execution and

reconfigures itself to avoid failure. The concept of self adap-
tion is especially important to embedded system applica-
tions that demand dependability and survivability. We pro-
posed a model-based framework for building self-adaptive
embedded systems. Our approach has several benefits: first,
monitoring and reconfiguration mechanisms are built in as
part of design. We work with models and hence our ap-
proach can be readily incorporated into existing design envi-
ronment. For instance, an existing model-based code gener-
ator can be used to generate embedded codes directly from a
self-adaptive model; second, requirements are formally spec-
ified. We introduce a formal language REDL to specify re-
configuration plans rigidly and give a formal semantics for
reconfiguration in context of hybrid automaton-based mod-
eling; finally, the liberal use of formal techniques at differ-
ent stages of design and development allows us to rigidly
specify system requirement and reconfiguration plans, and
helps automate the process of building self-adaptive embed-
ded programs.
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to self-adaptive software based on supervisory control. In
IWSAS’01, pages 24–38, 2001.

[7] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-mac: a
run-time assurance tool for Java. In 1st International
Workshop on Run-time Verification, Electronic Notes in
Theoretical Computer Science 55 No. 2, 2001.

[8] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshel. Software Tools for Technology Transfer, 1:134–152,
1997.

[9] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on formal
specifications. In Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1999.

[10] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid
systems. In Real-Time: Theory in Practice, REX
Workshop, LNCS 600, pages 447–484. Springer-Verlag,
1991.

[11] M2IST toolkit. University of Pennsylvania.
http://www.cis.upenn.edu/∼tanli/tools/mist.html, 2003.

[12] K. Narendra and A. Annaswamy. Stable Adaptive Systems.
Prentice-Hall, 1988.

[13] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum, and
A. Wolf. An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems, 14(3):54–62, 1999.

[14] Stateflow Simulink and Real time workshop. The
MathWorks, Inc. In http://www.mathworks.com.

[15] SONY AIBO Robot. Sony corporation.
http://www.aibo.com.

[16] E. Strunk and J. Knight. Dependability through assured
reconfiguration in embedded system software. IEEE
Transactions on Dependable and Secure Computing, To
appear, 2006.

[17] L. Tan. Model-based self-monitoring embedded programs
with temporal logic specification. In Proceedings of 20th
IEEE/ACM International Conference on Automated
Software Engineering (ASE’05), 2005.

[18] L. Tan, J. Kim, and I. Lee. Testing and monitoring
model-based generated program. In Proceeding of Runtime
Verification Workshop, volume 89 of Electronic Notes in
Theoretic Computer Science. Elsevier Science, 2003.

[19] L. Tan, J. Kim, I. Lee, and O. Sokolsky. Model-based
testing and monitoring for hybrid embedded systems. In
Proceedings of IEEE International Conference on
Information Reuse and Integration, 2004.


