
A Hierarchical Formal Framework for
Adaptive N-variant Programs in Multi-core Systems

Li Tan Axel Krings
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu krings@uidaho.edu

Abstract

We propose a formal framework for designing and devel-
oping adaptive N-variant programs. The framework sup-
ports multiple levels of fault detection, masking, and re-
covery though reconfiguration. Our approach is two-fold:
we introduce an Adaptive Functional Capability Model
(AFCM) to define levels of functional capabilities for each
service provided by the system. The AFCM specifies how,
once a fault is detected, a system shall scale back its
functional capabilities while still maintaining essential ser-
vices. Next, we propose a Multi-layered Assured Archi-
tecture Design (MAAD) to implement reconfiguration re-
quirements specified by AFCMs. The layered design im-
proves system resilience in two dimensions: (1) unlike tra-
ditional fault-tolerant architectures that treat functional re-
quirements uniformly, each layer of the assured architec-
ture implements a level of functional capability defined in
AFCM. The architecture design uses lower-layer function-
alities (which are simpler and more reliable) as reference
to monitor high-layer functionalities. The layered design
also facilitates an orderly system reconfiguration (graceful
degradation) while maintaining essential system services.
(2) each layer of the assured architecture uses N-variant
techniques to improve fault detection. The degree of redun-
dancy introduced by N-variant implementation determines
the mix of faults that can be tolerated at each layer. Our
hybrid fault model allows us to consider fault types ranging
from benign faults to Byzantine faults. Last but not the least,
multi-layers combined with N-variant implementations are
especially suitable for multi-core systems.

1 Introduction

Adaptive software has attracted much research interests
in recent years. Two key features of an adaptive software
are (1) the ability to monitor its own execution and (2) the
ability to reconfigure itself based on the result of runtime
monitoring [6]. Self adaptation is essential to improve sys-

tem survivability for a range of applications from safety-
critical embedded software to mission-critical web services
that shall be resilient to malicious attacks.

Developing adaptive software also raises some challeng-
ing questions. First, in many cases self adaptation adds one
more dimension of complexity to often already complicated
dependable system designs. A question is how one can
specify requirements for adaptiveness and implement them
in a way that facilities orderly and verifiable system recon-
figuration. Second, a system may be subject to a variety of
faults. So a challenge is how one could compartmentalize
and diversify system design so the system can be resilient
to different types of faults. This may be especially relevant
in safety-critical applications. Finally, runtime monitoring
requires additional computation power. Thus, it is impor-
tant that our design can make efficient use of the underlying
hardware architecture to minimize overhead.

To address the first challenge, we introduce a formal
model to specify requirements for self adaptation and then
propose a multi-layered assured architecture to realize re-
quirements expressed in the formal model. The Adaptive
Functional Capability Model (AFCM) defines levels of ca-
pabilities for each system functionality. AFCM specifies
how a system shall reconfigure itself and scale down its
functional capabilities while still maintaining essential ser-
vices and guaranteeing information assurance. Each level
of functional capability in AFCM will then be implemented
as a layer in the proposed Multi-layered Assured Architec-
ture Design MAAD. Note that we use the term level in the
context of the AFCM and the term layer in the context of
the MAAD. The architecture design embeds a Monitoring
and Reconfiguration Module (MRM) that uses lower-layer
functionalities as reference to monitor high-layer function-
alities and detect faults. The layered design also imple-
ments requirements for reconfiguration defined in AFCM
and provides information assurance: in case a fault is de-
tected, the system reconfigures itself by disabling affected
layers, while lower layers still maintain essential services.

To further improve system resilience, we use a diversi-
fied layered design based on N-variant techniques in each

layer [3, 4]. The N-variant techniques use redundant ex-
ecutions to reduce system vulnerability to common mode
faults. Redundant executions to benefit reliability have been
extensively used in fault-tolerant systems design, where the
evolution of redundancy schemes has gone from homoge-
neous redundancy to heterogeneous redundancy. The lat-
ter refers to components that are functionally equivalent but
implemented dissimilarly. The expectation is that redundant
but dissimilar implementations reduce or eliminate com-
mon mode faults. Dissimilarity is typically discussed in the
context of N-version programming [1] dating back to the
late 70s. In N-version programming it is assumed that sev-
eral software development groups derive programs based on
the same specification in isolation. The expectation is that
this helps to reduce common mode faults. An approach in-
spired by N-version software is N-variant or multi-variant
software, where different variants are generated in a more
automated fashion. Again, the expectation is that a fault af-
fecting one variant will not affect another. In both cases a
fault is detected if a difference is detected between outputs
generated by two versions or variants.

Redundant executions exercised by multiple variants
and extra work of runtime monitoring requires additional
computational power. To reduce overhead, our N-variant-
based implementation takes advantage of recent advances in
multi-core hardware. Most new general-purpose computers
incorporate dual or quad-core processors and higher num-
bers of cores are already implemented in graphics process-
ing units. Whereas in theory the computational capabilities
increase with the number of cores, it becomes difficult to ex-
ploit sufficient parallelism to keep all cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle. In
our approach, unused or underutilized cores are exploited to
increase reliability, security, and survivability. Specifically,
multiple variants execute on different cores, and if they can
execute on idle cores, this overhead can be largely absorbed.
This was also shown in [8] where multi-variant executed in
multi-core systems. Our approach extends this by making
extensive use of N-variant implementation at each layer of
functional capability. In general, the lower a layer, the more
variants it may have in order to provide a higher degree of
resilience and information assurance for essential service.
Nevertheless, exact number of variants and their configura-
tions required at each layer depend on the type and number
of faults that are to be detected or masked.

Background and Motivation N-variant executions have
been used in order to detect and mask transient faults [4]
and security related faults [3, 7, 8]. The different executions
are considered to be functionally equivalent. For example,
in [4] the replicas are managed dynamically by a hypervisor
(a virtual machine monitor) inserted between the hardware
and the operating system. The redundant functionalities ex-
ecute on replica partitions, where the number of partitions is
dictated by the fault model considered. In [8] multi-variant

executions have very high probability of exposing buffer
overflows, e.g., as would be experienced during a buffer
overflow attack. Here the dissimilarity is mainly affecting
the way memory is allocated. Again the functionalities do
not differ with respect to their functional specifications. The
same holds for the work in [3]. In fact the application of
the principle of N-variant execution is based on functional
equivalence of the executions.

The research presented here departs from this equiva-
lency assumption. Whereas we still see the system as being
composed of functionalities, we assume that these function-
alities may have different levels of functional capabilities
implemented at respective layers. Intuitively, by applying
the principle of “Occam’s razor” we make the assumption
that lower levels of functionality (and thus capability) will
ultimately result in lower probability of failure, as will be
described in the context of Figure 1.

Fault Model The system is subjected to diverse fault types
arising from diverse fault sources. Faults have been de-
scribed in the context of hybrid fault models [2, 9]. The
hybrid fault model in [9] considers three fault types, benign
faults, which are globally diagnosable; symmetric faults,
which imply that values are wrong, but equally perceived
by all components that receive the values; and asymmetric
faults, which have no assumption on the fault behavior. The
latter is often called Byzantine fault. Within the context of
this research we are mostly concerned with the error pro-
duced by the fault, rather than fault sources or types. For
example, a buffer overflow may result in observable differ-
ences in memory management. This in turn can lead to de-
tection and/or correction.

2 Specification Model & Architecture Design

In this section we extend and generalize the model de-
scribed in [5], which is a special case of the research below.

2.1 Adaptive Functional Capability Model

We propose a formal model to specify multiple function-
alities with adjustable levels of capability. The model, i.e.,
the Adaptive Functional Capability Model, attaches each
functionality to layers of capability. The AFCM is used as
part of requirement specification. During requirement elic-
itation, a development team works with stake holders of a
project to identify not just functionalities, but also capability
levels for each functionality. These capability levels specify
graceful degradation in case of faults or when under attack.

Assume the system is comprised of functionalities
F1 · · ·Fm. Figure 1 shows the AFCM for two sample func-
tionalities F1 and F2. The requirements for F1 define three
levels of capabilities: F 1

1 defines the set of core operations
that are mission-critical, F 2

1 includes F 1
1 and some non-

critical but value-added operations, and F 3
1 adds some more

F1F2F3 111 F1F2 22

Figure 1. AFCM for functionality F1 and F2

value-added operations. We write F 1
1 � F 2

1 � F 3
1 , where

� is a preorder on the capability levels. The semantics of
� is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system,
a functionality F can be specified as a set of sequences of
operations T (F) (in requirement elicitation, often referred
to as scenarios or flow of events). We represent a sequence
of operations as (p0(I0), O0), (p1(I1), O1), · · ·, where pi is
the operation at step i, Ii is the input data set, and Oi is the
output dataset. By default, T (F) also includes a null se-
quence τ . In such a system, we can define that F j ≺ F j+1

if and only if T (F j) v T (F j+1), where the piecewise in-
clusion relation v is defined as follows:

(i) T (F j) ⊆ T (F j+1); and,

(ii) For each (p0(I0), O0), (p1(I1), O1), · · ·
∈ T (F j+1), there is a sequence of operations
(p′0(I

′
0), O

′
0), (p

′
1(I

′
1), O

′
1), · · · ∈ T (F j) and a non-

decreasing function g such that g(0) = 0, pk = p′g(k),
Ik ⊇ I ′g(k), and Ok ⊇ O′

g(k).

Note that (i) states that every sequence of operations de-
fined at capability F j shall also be included at capability
F j+1. Furthermore, (ii) states that each sequence of opera-
tions in F j+1 extends a sequence of operations in F j . Note
that (ii) doesn’t prohibit the introduction of a sequence of
completely new operations in T (F j+1). In such a case, the
sequence of new operations can be seen as an extension of
the null sequence τ ∈ T (F j).

As an example, consider an adaptive N-variant imple-
mentation of a secured database system D. Each record
d = {d1, d2} inD contains two sets of data. Set d1 contains
mission-critical data and d2 is a set of non-mission-critical
but value-added data. For a registered client, D stores its
private keyK ′

D and each registered user’s public keyKU . A
registered user keeps his/her private keyK ′

U andD’s public
key KD. Communication between D and a registered user
is encrypted using the public/private key pairs. For sim-
plicity, we assume that the encryption algorithm in use is
deterministic. Let’s consider a functionality F of D, which
allow a registered user to retrieve a record by its record ID
(RID). F is defined with two levels of capabilities. At level
F 1, a client can retrieve the mission-critical data associated
with a record, and at level F 2, a client may also retrieve
valued-added data associate with the record.

Using our framework, the functional capabilities F 1

and F 2 are implemented by two layers L1 and L2. Each

user
1: encry(KD, RID)

2: req

3: send (uid, req)

1: send(req)

2: decry(KD’, req)

3: RID1

:L2 :DB

4: query (RID1)

5: {d1
1, d1

2}

:L1

6: encry(KU, {d1
1})

7: {e1
1}

8: cmd (“send”, {e1
1})

1: send(req)

3: RID2

4: query (RID2)

6: encry(KU, {d2
1, d2

2})

7: {e2
1,e2

2}

5: {d2
1, d2

2}

:MRM

8: cmd (“send”, {e1
1,e2

2})

PAR

1: send({e2
1, e2

2})

2: decry(K’U, {e2
1, e2

2})

3: {d2
1, d2

2}

3: decry(K’U, {e1
1})

4: {d1
1}

1: destroy

ALT
[e1

1=e2
1]

[else]

2: decry(KD’, req)

2: send({e1
1})

Figure 2. Sequence diagram for an adaptive
secured database system D

layer consists of N-variant modules for required reliability
and security. The Monitoring and Reconfiguration Module
(MRM) decides the operational status of L1 and L2. It also
serves as the interface between a user and D. The underly-
ing database contains actual records and it can only be ac-
cessed by L1 and L2. The details of architecture design in
our framework will be discussed in Section 2.2. The UML
sequence diagram in Figure 2 shows interactions between
a registered user and the database system D. The system’s
behavior at capability level F i is defined by the set of suc-
cessful interactions T (F i) among a user, MRM, Li, and
the underlying database DB. If both L1 and L2 operate
correctly, then d11 = d21 and hence {d11} ⊆ {d21, d22}. There-
fore, T (F 1) v T (F 2) and F 1 � F 2, i.e., the system D
implements the preorder on capability levels F 1 and F 2.

The purpose of AFCM is to specify not only functional
requirement, but also requirements for reconfiguration and

adaptiveness. It has two features to serve its purpose:
First, the model associates each functionality with capa-

bility levels, which specify reconfiguration requirements for
the functionality. It states that, in the event of a fault, e.g.,
the system has been compromised, a system shall scale back
its services in an orderly manner by following the capabil-
ity levels defined in AFCM, e.g., recovery to a lower level
implemented in next layer down.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-
wise inclusion relationvwe proposed for transaction-based
systems. It requires that system behavior at a higher ca-
pability level shall be an extension of behavior at a lower
capability level. Hence, we can use behavior at a lower ca-
pability level as a reference for monitoring behavior at the
higher capability level, and an implementation for capabil-
ity levels provides a path for a system to scale back itself.

It shall be noted that AFCM does not require that all the
functionalities in it have the same hierarchy. For example,
F1 and F2 in Figure 1 have different levels of capabilities.
Each functionality in an AFCM has its own hierarchy of
capability levels reflecting its requirement for adaptiveness.

2.2 Layered N-variant Architecture

To implement the reconfiguration requirements specified
in the AFCM using different levels, we propose a layered
adaptive architecture design. Each layer realizes its corre-
sponding AFCM level using N-variant techniques such as
shown in [3, 8]. Figure 3 shows an example of the adap-
tive N-variant architecture for two functionalities F 1 and
F 2. The architecture has a layered structure. Each horizon-
tal layer realizes a capability level, i.e., it implements se-
quences of operations specified for its capability level. A
layer may be disabled if it is found not functioning cor-
rectly.Fault detection is the result of redundancy manage-
ment at the specific layer, or the layer beneath it, which
has the monitoring abilities of its capabilities at the layer
above it. The capability level of the entire functionality is
decided by its highest enabled layer. Each layer is a collec-
tion of variants implementing its capability level. Variants
are systematically diversified so that it is unlikely that that
a common mode fault can occur [3, 8], e.g., for a given
fault model, an attacker can not compromise all the variants
without being detected and/or the fault being masked. One
could argue that a lower layer should have more variants to
improve resilience of the functionality. Each functionality
may have a different layered structure that reflects its adapt-
ability requirement. For example, in Figure 3 F1 and F2 are
implemented by (L1

1, L
2
1, L

3
1) and (L1

2, L
2
2), respectively.

3 Adaptive Survivability

The layered adaptive N-variant architecture improves
system resilience by supporting 1) real-time fault detection

N-variant

C
ap

ab
ili

ty

V1,1
3

V1,1
1

V1,1
2

V1,2
1

V1,3
1

V1,2
2

L
3

L
2

L
1

F1

N-variant

C
ap

ab
ili

ty

V2,1
1

V2,1
2

V2,2
1

L
2

L
1

F2

Monitoring and Reconfiguration Module (MRM)

Figure 3. A layered adaptive N-variant archi-
tecture design for the AFCM of Figure 1

though redundancy management and cross-layer monitor-
ing, 2) fault masking, and 3) system reconfiguration. The
architecture design in Figure 3 includes the Monitoring and
Reconfiguration Module (MRM). Critical or sensitive func-
tionalities are implemented using the layered N-variant ar-
chitecture and the MRM acts as a sentry for layered N-
variant components. The MRM monitors and sanctions the
communication in and out of the N-variant components. To-
gether, the N-variant-based layers and the MRM provide
runtime monitoring and real-time fault tolerance with re-
configuration, essential for an adaptive system.

Runtime monitoring by the MRM The MRM uses ob-
servable behavior of a lower layer to decide whether the
layer above is compromised or not. If a fault is detected, it
reconfigures the system by disabling affected layers while
essential functional capabilities are still provided by the
lower layer(s). In section 2.1 capability levels in the AFCM
are defined in such a way that a sequence of operations spec-
ified at a higher level is an extension of some sequence of
operations specified at a lower level. In our layered adap-
tive N-variant architecture, all the layers process incoming
requests concurrently. Since a layerLi is an implementation
of an AFCM capability level F i, a sequence of operations
executed by layer Li shall be included in a sequence of op-
erations executed by layer Li+1. Should this not be the case
it indicates problems (i.e., a fault) in Li+1. The lower layer
Li is realized using N-variants of simpler implementations
and potentially a higher degree of redundancy. It is argued
that lower complexity implementations together with more
stringent analysis/testing at Li is assumed to make variants
in Li more reliable than in Li+1. A larger degree of N-
variants also increases reliability, as it implements a k-of-N
configuration. In general we argue that the number of com-
ponents (degree of N-variant) at layer Li should be larger
than that of Li+1 and the fail-rates of the components at Li

are smaller than those at layer Li+1, due to its simpler im-

plementation. The result is a higher reliability at layer Li.

Real-time reconfiguration The AFCM provides a recon-
figuration plan in which a functionality can scale back
its services in an orderly manner, thus providing graceful
degradation. A layer Li serves as the backup for layer Li+1

above it. A lower layer forgoes some functional capability
in lieu of improved dependability. If the MRM detects a
fault in layer Li+1, it disables Li+1 and the system auto-
matically scales its capability to the level implemented by
Li. For completeness shake it should be noted that capabili-
ties can not only be decreased, but also extended should the
need arise, e.g., after recovery or repair.

Consider the example of the secured database system in
Figure 2. The design contains two N-variant-based layers,
L1 and L2, that implement capability levels F 1 and F 2 re-
spectively. Each query request is duplicated by the MRM
and routed to both layers for processing. Consequently,
each layer issues the same query to a back-end database
and encrypts the query result. The difference is that L1

only encrypts the mission-critical portion of the query re-
sult as e11 while L2 encrypts the entire result as {e21, e22}.
Requests to send back encrypted data from both layers are
intercepted and checked by the MRM. Since we assume that
the encryption algorithm is deterministic, e11 = e21 if both
layers operate correctly. Otherwise, the MRM infers that
layer L2 has been compromised and hence it disables L2.
Consequently D scales back its capability to F 1, which is
implemented by L1. This action constitutes a survivability
feature with respect to the functionality F .

The layered adaptive N-variant architecture is designed
for improving system survivability for mission-critical ap-
plications. By implementing functionalities in layers the
capability of shifting to a lower layer (upon detection of
a fault) provides a contingent plan that allows a system to
scale back its services towards essential services as the re-
sult of faults or malicious attacks. However, the layered ar-
chitecture is also designed to support information security.
As can be seen in the example above w.r.t. confidentiality,
the MRM ensures that sensitive information in d2 will not
be leaked by a higher layer, even if the latter is compromised
by an attacker. In the example, the detection of a fault due
to discrepancies of results in L1 and L2, i.e., if e11 6= e21,
will result in MRM blocking the release of d2.

4 Reliability and Resilience

If we look at the multi-variant approach within a single
layer or our architecture, we can see that the N-variant ap-
proaches described in [3, 4, 7, 8] are actually special cases,
i.e., these approaches can be adopted at any layer within
our architecture. It should be noted that they all have spec-
ifications and implementation at the same level and layer
respectively. This means that the approaches deal with fault
detection and possible treatment dependent on the degree

of redundancy. However, adaptability and graceful degra-
dation as described above is not supported. For example,
the multi-variant scheme described in [8] uses two variants
of memory referencing. Both variants implement the same
functional capability. The model in [3] has the similar limi-
tation.

Fault masking using N-variant approaches is actually
more effective than typically observed in redundant sys-
tems, e.g., k-of-N or NMR. For example, in a triple modular
redundant systems two faulty modules can produce the
same result and consequently the TMR would vote on the
incorrect value in the majority vote. Given the schemes
described in [8] and [7] it is statistically very unlikely
that two modules produce the same fault. This is very
advantageous when trying to determine thresholds for
non-faulty values and to reduce the degree of N-variants at
each layer.

2

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) m(λ3) V 1
up V 2

up V 3
up V 1

down V 2
down V 3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

A Hierarchical Formal Model for N-variant Executions in Multi-core Systems

Li Tan Axel Krings,Robert Rinker, Clinton Jeffery
Washington State University University of Idaho
Richland, WA 99354-1641 Moscow, ID 83844-1010

litan@wsu.edu {krings,rinker,jeffery}@cs.uidaho.edu

Abstract

asdf

1 Introduction

m(λ1) m(λ2) λ3 L1
up L2

up L3
up L1

down L2
down L3

down

2 outline

1) intro fault models background to related work
2) Architecture 2.1 system view given by collec-

tion of Fi 2.2 updated capability model independence
of Fis (later consider dependencies (spatial[sharing], or
time[sequential]) 2.3 layered architecture describe using
two Fis, e.g., F1 of Figure Fig-two-2-Dim-Capability.pdf

3) Adaptation and Reconfiguration describe how one
would move intuitively between levels etc (similar to 2.3.
in CSIIRW paper)

4) Model Analysis a) use RBD of simple k-of-N compo-
sitions

into similar to CSIIRW

3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-

2

Figure 4. Petri-net for F1 in Figure 3

The analysis of the multi-level and multi-layer approach
is described using the example of functionality F1 shown in
Figure 3. F1 has three levels, F 1

1 , F
2
1 and F 3

1 , and their re-
spective layers L1, L2 and L3 use 3-variant, 2-variant, and
simplex implementations. Given the levels of redundancy
at each layer one can note that at L1 one can mask one
value fault, at L2 one can only detect (but not mask) one
fault and L3 has neither detection nor correction potential.
The masking and detection capabilities of functionality F 1

is modeled in the Petri net shown in Figure 4. Note that
this net does not reflect inter-layer monitoring, which will
be addressed separately. The upper subnet models the relia-
bility of the layers and is controlled by the Petri nets of the
triplex, duplex and simples of layer L1, L2 and L3 respec-
tively. Note that only the timed transitions of the triplex
and duplex depend on the markings of their input places,
reflected by the marking functions m(λ1) and m(λ2) re-
spectively. The simplex at layer L3 has a fail rate of simply
λ3. Furthermore note that unreliability of individual layers

are the probability of a token in the places Li
down.

Adaptability, and thus fault treatment, are modeled in the
upper part of the net. For example, layer L3 fails if either
it fails due to the firing of the transition between places V 3

up

and V 3
down, or if it is “shut down” due to a failure of a lower

layer, i.e., should a layer at level i fail, it will automatically
shut down layer i+1, implemented by inhibitory arcs in the
upper part of the Petri net.

It is simple to establish the exact reliability of F1 when
the fail-rates are known. However, in the presence of ma-
licious faults, e.g., hacking attacks or exploits, the assump-
tion of constant fail-rates does not hold anymore. In that
case, the Petri net stays the same, whereas the formal analy-
sis of the net becomes much more complicated. The reason
is that the constant fail rates of the timed transitions have to
be replaced by time-dependent hazard functions.

Li

Li+1

Fi

Fi FiF i+1

Li

Li+1
up

up
Li+1

down

i ≠ F (L)i i+1F (L)i

Figure 5. Cross-level monitoring

Figure 5 generalizes monitoring between two adjacent
layers. The left side of the figure shows the relationship be-
tween two levels of requirements for functionality F , i.e.,
between F i and F i+1. Note that F i ≺ F i+1. The respec-
tive implementations are in layers Li and Li+1. Note that
layerLi+1 consists of the implementations of the operations
of the lower layer based on F i as well as the value-added
operations specified by F i+1 \ F i. Thus monitoring is lim-
ited to operations specified by F i.

The Stochastic Activity Network (SAN) of inter-layer
cross-monitoring is shown on the right side of Figure 5. The
transition is activated when operations specified by F i dif-
fer in layer i and i + 1, i.e., if F i(Li) 6= F i(Li+1), where
F i(Lj) indicates the functional specification with respect
to layer Lj . Since F i+1 includes F i the MRM indicates
fault-free behavior if F i(Li) = F i(Li+1).

5 Conclusion

This research defined a hierarchical formal model for N-
variant executions especially suitable for systems based on
multi-core architectures. The model has two dimensions
to support fault detection and real-time adaptation. Mul-
tiple levels of functionality are implemented in layers. At
each (horizontal) layer, N-variant implementations support
detection and masking of faults. Individual layers can in-
corporate different N-variant solutions, including existing

techniques such as in [3, 4]. Adaptation is introduced in
the other (vertical) dimension. Lower layers, which imple-
ment the essential subset of capabilities of the higher layers,
are used to cross-monitor the higher layers. This is pos-
sible due to the inclusion relationship between functional
specifications at different levels. If discrepancies are de-
tected between layers the shut-down of the higher layer is
initiated. The use of N-variant executions at individual lay-
ers has several advantages. First, lower level functionalities
can effectively cross-monitor higher layers, which has posi-
tive implications for security and reliability. Second, during
adaptation executions can be shifted to lower layers, which
increases survivability and resilience.

References

[1] A. Avizienis , The Methodology of N-version Pro-
gramming, Software Fault Tolerance, edited by M.
Lyu, John Wiley & Sons, 1995.

[2] M.H. Azadmanesh, and R.M. Kieckhafer, Exploiting
Omissive Faults in Synchronous Approximate Agree-
ment, IEEE Trans. Computers, 49(10), pp. 1031-
1042, Oct. 2000.

[3] B. Cox, et. al., N-Variant Systems A Secretless
Framework for Security through Diversity, 15th
USENIX Security Symp., Vancouver, Aug. 2006

[4] C.M. Jeffery, and J.O. Figueiredo, Towards Byzan-
tine Fault Tolerance in Many-core Computing Plat-
forms, 13th IEEE International Symposium on Pa-
cific Rim Dependable Computing, 2007.

[5] A. Krings, et.al., Resilient Multi-core Systems: A Hi-
erarchical Formal Model for N-variant Executions,
Proc. CSIIRW09, ORNL, April 13-15, 2009.

[6] R. Laddaga, P. Robertson, and H. Shrobe, Introduc-
tion to Self-adaptive Software: Applications, Proc.
2nd Workshop on Self Adaptive Software, LNCS
2614, pp 275-283, May, 2001.

[7] A. Nguyen-Tuong, et. al., Security through Redun-
dant Data Diversity, DSN, Anchorage, June 2008.

[8] B. Salamat et. al. Multi-Variant Program Execu-
tion: Using Multi-Core Systems to Defuse Buffer-
Overflow Vulnerabilities, CISIS, pp. 843-848, 2008.

[9] P. Thambidurai, and Y.-K. Park, Interactive Consis-
tency with Multiple Failure Modes, Proc. 7th Symp.
on Reliable Distributed Systems, Columbus, OH,
pp. 93-100, Oct. 1988.

