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Abstract. This paper discusses the models and performance analysis
for an adaptive software architecture, which supports multiple levels of
fault detection, masking, and recovery through reconfiguration. The ar-
chitecture starts with a formal requirement model defining multiple lev-
els of functional capability and information assurance. The architecture
includes a multi-layer design to implement the requirements using N-
variant techniques. It also integrates a reconfiguration mechanism that
uses lower layers to monitor higher layers, and if a fault is detected, it
reconfigures a system to maintain essential services. We first provide a
general reliability model (based on generalized stochastic Petri nets) for
such a system with cross-monitoring for reconfiguration. Next, we de-
fine a probabilistic automaton-based model for behavioral modeling of
the system. This model is especially suitable for modeling security prob-
lems induced by value faults. Whereas the Petri net allows for reliability
modeling and reconfiguration, the performance analysis of the system
is given via probabilistic model checking. The models are experimen-
tally evaluated and compared. With the current widespread deployment
of multi-core processors, one question in software engineering is how to
effectively harness the parallel computing power provided by these pro-
cessors. The architecture presented here allows us to explore the parallel
computing power that otherwise may be wasted, and uses it to improve
the dependability and survivability of a system, which is validated by
our performance analysis.

1 Introduction

With the introduction of multi-core processors and their wide-spread deploy-
ment ranging from laptops to cloud computing, a question has been raised on
how we can effectively exploit the parallel resources. It is projected that the
level of application-exploitable parallelism will limb behind the number of cores
in multi-core processors and GPU (graphics processing units) since to date most



applications only allow limited parallelism. One way of harnessing these other-
wise unused or underutilized resources is to use them for the purpose of increasing
dependability, security, and survivability of a system, but doing so requires the
support from adaptive software.

Two key features of an adaptive software are (1) the ability to monitor its own
execution and (2) the ability to reconfigure itself based on the result of runtime
monitoring [6]. While the proposed benefits of adaptive software is promising,
developing adaptive software also raises some challenging questions. First, in
many cases self-adaptation adds one more dimension of complexity to often
already complicated dependable system designs. A question is how to specify
requirements and implement them in a way that facilitates orderly and verifiable
system reconfiguration. Second, a system may be subject to a variety of faults. So
a challenge is how one could compartmentalize and diversify system design so the
system can be resilient to different types of faults. This may be especially relevant
in safety-critical applications. Finally, runtime monitoring requires additional
computation power. Thus, it is important that our design can make efficient use
of the underlying hardware architecture to minimize overhead.

To address the first challenge, we use a formal model to specify require-
ments for self-adaptation and then propose a multi-layered assured architecture
to realize requirements expressed in the formal model. The Adaptive Functional
Capability Model (AFCM) introduced in [10] defines levels of capabilities for
each system functionality. The AFCM specifies how a system shall reconfigure
itself and scale down its functional capabilities while still providing essential
services and information assurance. Each level of functional capability in the
AFCM will then be implemented as a layer in a Multi-layered Assured Architec-
ture Design. The architecture design embeds a Monitoring and Reconfiguration
Module (MRM) that uses lower-layer functionalities as reference to monitor high-
layer functionalities. In case a fault is detected, the system reconfigures itself by
disabling affected layers, while lower layers still maintain essential services.

To further improve system resilience, we use a diversified layered design based
on N-variant techniques in each layer [3, 4]. The N-variant techniques use redun-
dant executions to reduce system vulnerability to common-mode faults. The ex-
pectation is that redundant but dissimilar implementations reduce or eliminate
common-mode faults. Dissimilarity is typically discussed in the context of N-
version programming [1] dating back to the late 70s. In N-version programming
it is assumed that several software development groups independently derive pro-
grams from the same specification. The concept of N-variant software is inspired
by N-version software, but in N-variant software different variants are generated
in a more automated fashion. In both cases a fault is detected if a difference is
detected between outputs generated by two versions or variants.

Redundant executions exercised by multiple variants and extra work of run-
time monitoring requires additional computational power. To reduce overhead,
our N-variant-based implementation takes advantage of multi-core hardware.
Most new general-purpose computers incorporate dual or quad-core processors
and higher numbers of cores are already used widely in GPUs. Whereas in the-
ory the computational capabilities increase with the number of cores, it becomes
difficult to exploit sufficient parallelism to keep all cores utilized. Most common
applications still allow little parallelism and it is likely that cores may be un-



derutilized or running idle. In our approach, unused or underutilized cores are
exploited to increase reliability, security, and survivability. Specifically, multi-
ple variants execute on different cores, and if they can execute on idle cores,
this overhead can be largely absorbed. This was also shown in [8] where multi-
variants executed in multi-core systems. Our approach extends this by making
extensive use of N-variant implementation at each layer of functional capability.
In general, the lower a layer, the more variants it may have in order to provide
a higher degree of resilience and information assurance. Nevertheless, the exact
number of variants and their configuration required at each layer depends on the
type and number of faults that are to be detected or masked.

The contributions of this paper are three-fold. First the hierarchical formal
framework for adaptive N-variant programs outlined in [10] is applied to a sys-
tem with multiple functionalities. Second, a reliability model is derived for such
systems using Generalized Stochastic Petri Nets (GSPN). This model specifies
how N-variant executions with different levels of capabilities are managed, and
it models cross-monitoring as a mechanism to initiate survivability measures.
Third, we develop a stochastic behavior model and apply probabilistic model
checking to it for analyzing the performance of our adaptive software architec-
ture. Whereas the GSPN model allows to determine the reliability of the system,
the stochastic behavior model incorporates the consequences of data-dependent
false negatives, and it aids in the formal verification towards an implementation.
We will show how one can use the reliability model to derive the theoretically
achievable reliability that is independent of the data, and how one can use the
independently derived behavioral model to verify the results of the reliability
analysis, quantify the impact of data dependent coincidental faults, and aid in
the derivation of implementations.

The rest of the paper will be organized as follows: Section 2 introduces a
formal model for specifying levels of functional capabilities, a layered adaptive
architecture design to realize the adaptive functional capability model, and an N-
variant-based approach to implement the architecture design. Section 3 discusses
the features and benefits of our adaptive software architecture in terms of its
adaptivity and survivability. Section 4 gives a Generalized Stochastic Petri Net
(GSPN) model that we use for reliability analysis. Section 5 develops a stochastic
behavior model that is used in conjunction with probabilistic model checking for
analyzing performance of our software architecture and also validating the result
of reliability analysis. Section 6 discusses the outcome of our computational
experiments that are designed for assessing the reliability and performance of
our software architecture. Finally Section 7 concludes the paper.

2 Specification Model & Architecture Design

2.1 Adaptive Functional Capability Model

The Adaptive Functional Capability Model (AFCM) specifies multiple function-
alities with adjustable levels of capability. The model attaches each functional-
ity to layers of capability. During requirement elicitation, a development team
works with stake holders of a project to identify not just functionalities, but also
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Fig. 1. AFCM for functionality F1 and F2

capability levels for each functionality. These capability levels specify graceful
degradation in case of faults or when under attack.

Assume that the system is comprised of functionalities F1 · · ·Fm. Figure 1
shows the AFCM for two sample functionalities F1 and F2. The requirements
for F1 define three levels of capabilities: F 1

1 defines the set of core operations
that are mission-critical, F 2

1 includes F 1
1 and some non-critical but value-added

operations, and F 3
1 adds some more value-added operations. We write F 1

1 �
F 2
1 � F 3

1 , where � is a preorder on the capability levels. The exact semantics of
� is defined and interpreted based on application context. In [10] we described a
transaction-based asynchronous system that contained mission-critical data and
non-mission-critical but value-added data to demonstrate the AFCM.

The purpose of the AFCM is to specify not only functional requirements,
but also requirements for adaptiveness. It has two features to serve its purpose:
First, the model associates each functionality with capability levels, which specify
reconfiguration requirements for the functionality. It states that, in the event of
a fault, e.g., the system has been compromised, a system shall scale back its
services in an orderly manner by following the capability levels defined in the
AFCM, e.g., recovering to a lower level implemented in the next layer down;
Second, the definition of capability levels also facilitates reconfigurable design.
It requires that the system behavior at a higher capability level shall be an
extension of the behavior at the lower level. Hence, we can use the behavior at
a lower capability level as a reference for monitoring the behavior at a higher
level, and an implementation for capability levels provides a path for a system
to scale itself back.

It shall be noted that each functionality in an AFCM may have its own hierar-
chy of capability levels reflecting its requirement for adaptiveness. For example,
F1 and F2 in Figure 1 have different levels of capabilities.

2.2 Layered N-variant Architecture

To implement the reconfiguration requirements specified in the AFCM using dif-
ferent levels, a layered adaptive architecture design is used. Each layer realizes
its corresponding AFCM level using N-variant techniques such as shown in [3,
8]. Figure 2 shows an example of the adaptive N-variant architecture for two
functionalities F1 and F2. The architecture has a layered structure. Each verti-
cal layer realizes its respective capability level, i.e., it implements sequences of
operations specified for its capability level. A layer may be disabled if it is found
not functioning correctly, i.e., if a fault is detected. Fault detection is the result
of redundancy management at the specific layer, or the layer beneath it, which



has the monitoring abilities of its capabilities at the layer above it. The capabil-
ity level of the entire functionality is decided by its highest enabled layer. Each
layer itself is a collection of variants implementing its capability level. Variants
are systematically diversified so that it is unlikely that a common-mode fault
can occur [3, 8], e.g., for a given fault model, an attacker can not compromise
all the variants without being detected and/or the fault being masked. One
could argue that a lower layer should have more variants to improve resilience
of the functionality. Each functionality may have a different layered structure
that reflects its adaptability requirement. For example, in Figure 2 F1 and F2
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Fig. 2. A layered adaptive N-variant architecture design for the AFCM of Figure 1

3 Adaptability and Survivability

The layered adaptive N-variant architecture improves system resilience by sup-
porting 1) real-time fault detection though redundancy management and cross-
layer monitoring, 2) fault masking, and 3) system reconfiguration. The archi-
tecture design in Figure 2 includes the Monitoring and Reconfiguration Module
(MRM). Critical or sensitive functionalities are implemented using the layered
N-variant architecture and the MRM acts as a sentry for layered N-variant com-
ponents. The MRM monitors and sanctions the communication in and out of
the N-variant components. Together, the N-variant-based layers and the MRM
provide runtime monitoring and real-time fault tolerance with reconfiguration,
essential for an adaptive system.

Runtime monitoring by the MRM: The MRM uses observable behavior of
a lower layer to decide whether the layer above is compromised or not. If a fault
is detected, it reconfigures the system by disabling affected layers while essen-
tial functional capabilities are still provided by the lower layer(s). In section 2.1



capability levels in the AFCM are defined in such a way that a sequence of oper-
ations specified at a higher level is an extension of some sequence of operations
specified at a lower level. In our layered adaptive N-variant architecture, all the
layers process incoming requests concurrently. Since a layer Li is an implemen-
tation of an AFCM capability level F i, a sequence of operations executed by
layer Li shall be included in a sequence of operations executed by layer Li+1.
Should this not be the case it indicates problems (i.e., a fault) in Li+1. The lower
layer Li is realized using N-variants of simpler implementations and potentially a
higher degree of redundancy. It is argued that lower complexity implementations
together with more stringent analysis/testing at Li is assumed to make variants
in Li more reliable than in Li+1. A larger degree of N-variants also increases
reliability, as it implements a k-of-N configuration.

Real-time reconfiguration: The AFCM provides a reconfiguration plan in
which a functionality can scale back its services in an orderly manner, and thus
provide graceful degradation. A layer Li serves as the backup for layer Li+1

above it. A lower layer forgoes some functional capability in lieu of improved
dependability. If the MRM detects a fault in layer Li+1, it disables Li+1 and the
system automatically scales its capability to the level implemented by Li. For
the sake of completeness it should be noted that capabilities can not only be
decreased, but also extended should the need arise, e.g., after recovery or repair.

The layered adaptive N-variant architecture is designed for improving system
survivability for mission-critical applications: the capability of shifting to a lower
layer (upon detection of a fault) provides a contingency plan that allows a system
to scale back its services towards essential services as the result of the fault.

4 Reliability Analysis

In this section we discuss the impact of the layered model from a reliability anal-
ysis point of view. Before establishing a formal model for the analysis we need
to establish the link to previous research. Multi-variant approaches have been
previously described in [3, 4, 8, 12]. However, these models are described within
a single layer, and their N-variant models constitute special cases of the layered
architecture presented here. Thus, the cited approaches can be adopted at any
layer within our architecture. It should be noted that they all have specifica-
tions and implementation at the same level and layer respectively. This means
that the approaches deal with fault detection and possible treatment dependent
on the degree of redundancy. However, adaptability and graceful degradation
as described above is not supported. For example, the multi-variant scheme de-
scribed in [8] uses two variants of memory referencing. Both variants implement
the same functional capability, e.g., at layer L1 with variants V 1

1,1 and V 1
1,2. The

model in [3] has the similar limitation.
The application of N-variant approaches is not simply another way of generat-

ing dissimilarity similarly to N-version programming, but the specific derivation
of variants that are designed to minimize common-mode faults, to the point of
predictable elimination. For example, the memory management in [8] practically
eliminates the potential for buffer overflows, since the two variants use reverse



memory allocation (one uses forward and the other reversed allocation). In or-
der for a buffer overflow attack to succeed not only would both variants have to
be attacked at the same time, but, more importantly, the buffer overflow would
have to have meaning in two directions. The latter implies that the overflow
would have to “flow” into reverse memory in the two variants, and only a buffer
overflow that acts as a palindrome could have the potential to succeed. The ap-
proach in [12] is similar in nature in that memory is partitioned in such a way
that a valid access in one variant is invalid in the other. Thus, given the schemes
described in [8] and [12] it is statistically very unlikely that two modules produce
the same fault as the result of code injection.
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3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-
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variant software, where different variants are generated in a
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The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
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3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-
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tively. The simplex at layer L3 has a fail rate of simply λ3.
Furthermore note that unreliability of individual layers are
the probability of a token in the places Li

down.
Adaptability, and thus fault treatment, are modeled in the

upper part of the net. For example, layer L3 fails if either
it fails due to the firing of the transition between places V 3

up

and V 3
down, or if it is “shut down” due to a failure of a lower

layer, i.e., should a layer at level i fail, it will automatically
shut down layer i+1, implemented by inhibitory arcs in the
upper part of the Petri net.

It is simple to establish the exact reliability of F1 when
the fail-rates are known. However, in the presence of ma-
licious faults, e.g., hacking attacks or exploits, the assump-
tion of constant fail-rates does not hold anymore. In that
case, the Petri net stays the same, whereas the formal analy-
sis of the net becomes much more complicated. The reason
is that the constant fail rates of the timed transitions have to
be replaced by time-dependent hazard functions.
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Figure 5. Cross-level monitoring

Figure 5 generalizes monitoring between two adjacent
layers. The left side of the figure shows the relationship be-
tween two levels of requirements for functionality F , i.e.,
between F i and F i+1. Note that F i ≺ F i+1. The respec-
tive implementations are in layers Li and Li+1. Note that
layer Li+1 consists of the implementations of the operations
of the lower layer based on F i as well as the value-added
operations specified by F i+1 \ F i. Thus monitoring is lim-
ited to operations specified by F i.

The Stochastic Activity Network (SNA) of inter-layer
cross-monitoring is shown on the right side of the figure.
The transition is activated when operations specified by F i

differ in layer i and i+1, i.e., if F i(Li) �= F i(Li+1), where
F i(Lj) indicates the functional specification with respect
to layer Lj . Since F i+1 includes F i the MRM indicates
fault-free behavior if F i(Li) = F i(Li+1). Let C1 be the
condition that F i(Li) �= F i(Li+1)

5 Conclusion

This research defined a hierarchical formal model for N-
variant executions especially suitable for systems based on
multi-core architectures. The model has two dimensions
to support fault detection and real-time adaptation. Mul-
tiple levels of functionality are implemented in layers. At

each (horizontal) layer, N-variant implementations support
detection and masking of faults. Individual layers can in-
corporate different N-variant solutions, including existing
techniques such as in [3, 4]. Adaptation is introduced in
the other (vertical) dimension. Lower layers, which imple-
ment the essential subset of capabilities of the higher layers,
are used to cross-monitor the higher layers. This is pos-
sible due to the inclusion relationship between functional
specifications at different levels. If discrepancies are de-
tected between layers the shut-down of the higher layer is
initiated. The use of N-variant executions at individual lay-
ers has several advantages. First, lower level functionalities
can effectively cross-monitor higher layers, which has posi-
tive implications for security and reliability. Second, during
adaptation executions can be shifted to lower layers, which
increases survivability and resilience.
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cross-layer monitor

layer control

layer 
implementation

Fig. 3. Complete GSPN Model

The analysis of the multi-level and multi-layer approach is described using
the example of functionality F1 shown in Figure 2. F1 has three levels, F 1

1 , F
2
1

and F 3
1 , and their respective layers L1, L2 and L3 use 3-variant, 2-variant, and

simplex implementations respectively. If we consider each layer individually then,
given the levels of redundancy, one can mask one value fault at L1, one can only
detect (but not mask) one value fault at L2, and there is neither detection nor
correction potential at L3.

The reliability and survivability of functionality F 1 is modeled in the gener-
alized stochastic Petri net shown in Figure 3. The net is drawn as three subnets:
the cross-layer monitor, the layer control and the layer implementation. The
three N-variant layers are modeled in the three subnets of the layer implemen-
tation subnet and represent TMR, duplex, and simplex models of layers L1, L2

and L3 respectively. Each of these three simple nets only model their associated
layer in isolation, i.e., they constitute 2-of-3, 2-of-2, and 1-of-1 systems. Note
that only the timed transitions of the TMR and duplex depend on the mark-



ings of their input places, reflected by the marking functions m(λ1) and m(λ2)
respectively. The simplex at layer 3 has a fail rate of simply λ3.

The layer control subnet models the interaction between layers, which are
assumed to be either up or down. Initially all three layers are up as indicated
by the single tokens in L1

up, L
2
up and L3

up. If a layer fails, i.e., if the threshold
of tokens is reached in one of the subnets of the layer implementation subnet,
the layer control subnet automatically disables the corresponding layer and all
higher layers, i.e., failure at layer i will shut down all layers ≥ i. For example,
a failure of one of the variants in layer 2 results in a token being absorbed in
V 2
up. This in turn disables the inhibitory arc at V 2

up (which needs two tokes to

inhibit) and the associated transition will “move” the token from L2
up to L2

down

in the layer control subnet. The lack of a token in L2
up will cause the transition

between L3
up and L3

down to fire. The result is that both L2
down and L3

down have

a single token. The probability of a token in Lidown is thus the unreliability of
layer Li. Alternatively, the probability of a token in Liup is the reliability of Li.
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Fi FiF i+1
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Fig. 4. Cross-layer monitoring scope

Monitoring across layers is modeled with the cross-layer monitoring subnet
of Figure 3. To describe the exact approach for cross-layer monitoring consider
Figure 4, which shows the relationship between two levels of requirements for
functionality F , i.e., between F i and F i+1. Cross-monitoring of layer Li on
Li+1 is achieved by comparing results from Li+1 to those computed by the
more reliable layer Li. However, the functional capabilities of the layers are
not the same, e.g., as was shown in Figure 1. This makes realistic cross-layer
monitoring dependent on the computations of F i+1 and F i that can be effectively
compared. The resulting extreme cases are shown in Figure 4. To the left we
have the scenario in which layer Li can monitor all functionalities of layer Li+1.
This is different in the right scenario in which layer Li can only monitor a
subset of the functionality at layer Li+1. Note that F i ≺ F i+1. The respective
implementations are in layers Li and Li+1. Note that layer Li+1 consists of
the implementations of the operations of the lower layer based on F i as well as
the value-added operations specified by F i+1\F i. Thus cross-layer monitoring is
limited to operations specified by F i. Realistic cross-layer monitoring is anywhere
in-between the two extreme scenarios and is application dependent.

The Stochastic Activity Network (SAN) of cross-layer monitoring is shown
in Figure 5. The transition is activated when operations specified by F i differ in
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Fig. 5. SAN for cross-layer monitoring

layer Li and Li+1, i.e., if F i(Li) 6= F i(Li+1), where notation F i(Lj) indicates
the functional specification with respect to layer Lj . Since F i+1 includes F i the
MRM indicates fault-free behavior if F i(Li) = F i(Li+1).

Cross-layer monitoring is modeled in the cross-layer monitoring subnet of
Figure 3 by translating the condition F i(Li) 6= F i(Li+1) of the SAN in Figure 5
into cross-monitoring detection rates Ci in the GSPN.

It is simple to establish the exact reliability of functionality F1 when the
fail-rates are known. However, in the presence of malicious faults, e.g., hacking
attacks or exploits, the assumption of constant fail-rates does not hold anymore.
In that case, the GSPN stays the same, whereas the formal analysis of the net
becomes much more complicated. The reason is that the constant fail rates of the
timed transitions have to be replaced by time-dependent hazard functions. The
GSPN of Figure 3 will be the basis for the reliability simulations in Section 6.

5 Stochastic Models

To evaluate the performance of our architecture, we model its stochastic behav-
ior using probabilistic automaton. We then apply probabilistic model checking
to study the performance of the model. We are particularly interested in two
metrics: service availability and information security. To help illustrate our ap-
proach, we will use an example based on layer L1 of functionality F1 in Figure 2.

To model the component-based design in Section 2.2, our stochastic model is
a parallel composition of layers and the Monitoring and Reconfiguration Module
(MRM), which in turn is a parallel composition of Monitoring and Reconfigura-
tion Sub-Modules (MRSM). Each MRSM is associated with a layer. The MRSM
monitors and reconfigures its associated layer by using the output from the layer
below. This is consistent with the cross-layer monitoring SAN shown in Figure 5.

Preliminary: We model our software architecture and its components as proba-
bilistic finite automata [7]. A probabilistic finite automaton extends transitions
in a finite automaton with probabilities. Formally a probabilistic automata is
a tuple 〈Q,Θ, δ,Q0, F, Pδ, P0〉, where Q is a set of states, Θ is a set of input
symbols, δ ⊆ Q × Θ ×Q is a set of transitions, Q0 ⊆ Q is a set of start states,
F ⊆ Q is a set of accepting states, Pδ : δ → (0, 1] assigns each transition a prob-
ability, and P0 : Q0 → (0, 1] assigns each start state a probability. In addition,
Σq∈Q0

P0(q) = 1 and for each (p, a, p′) ∈ δ, Σq∈{q | (p,a,q)∈δ}Pδ((p, a, q)) = 1.



A successful run of the probabilistic automaton B = 〈Q,Θ, δ,Q0, F, Pδ, P0〉
is a sequence ρ = q0

a1→ q1 · · · an→ qn such that q0 ∈ Q0, (qi, ai+1, qi+1) ∈ δ for
0 ≤ i < n, and qn ∈ F . Given a sequence of inputs a1 · · · an, the probability that
the automaton B runs ρ is P0(q0)×Π0≤i<nPδ((qi, ai+1, qi+1)).

In this paper, we use an extension of probabilistic automata that supports
state variables and input variables. A state is designated by a predicate over state
variables. The predicate must be true when the state is active. Input variables
describe environmental inputs. Instead of input symbols, transitions are guarded
by a predicate over input and state variables. A transition is enabled if its source
state is active and its guard is true.

Stochastic Models of N-variant layers: Figure 6 shows a probabilistic automaton
that models L1 of F1 in Figure 2. It describes the behaviors of 3 variants in L1

and also a built-in voting mechanism that decides which variant(s) are working.
Models of N-variant layers use three state variables:

1. v is the number of working variants. The built-in voting mechanism decides
the status of variants by applying a threshold voting function. For example,
if value faults are considered and only 2 of 3 working variants produce the
same result, then simple majority vote will update the status of the minority
variant as not working.

2. w is the status of a layer. Initially all layers are working. If all the variants in
a layer are marked as not working, the layer will be marked as not working.
It should be noted that a variant marked working may still produce incorrect
results, as indicated by its e flag.

3. e is an error flag. e = true indicates that an erroneous output is produced
by the layer. This could happen when, for example, all the working variants
produce the exact same erroneous output, although its probability is small
due to N-variant implementation.
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Fig. 6. Probabilistic automaton for L1 of F1

The superscript (i) on variables indicate which layer they are associated to.
For example, v(1) indicates the number of working variants in layer L1. We



also use the following notations: given n variants, Pk|n is the probability that
the maximal number of variants producing the same result is k and there are
k variants producing the same correct result; Qk|n is the probability that the
maximal number of variants producing the same result is k and there are no k
variants producing the same correct result.

Stochastic Models of MRMs: Since the functional capability of the higher layer
subsumes that of the lower layer, the output from a layer can be used to monitor
the layer above for the services provided by both layers. This is implemented by
the Monitoring and Reconfiguration Module (MRM), as described in Section 3.
An MRM also decides whether the higher layer shall be disabled when there is
a discrepancy in the common services provided by two adjacent layers.

The MRM is a collection of Monitoring and Reconfiguration Sub-Module
(MRSM), each of which monitors a particular layer using the output from the
layer below. Figure 7 shows a probabilistic automaton that models the MRSM
for layer L2. Models of MRSMs and MRMs use the following two variables: d,
a Boolean variable indicating whether the output of a layer is disabled by the
MRM, and; c, a Boolean variable indicating whether a layer is compromised.
Q(1,2) in Figure 7 is the probability that, when layer L1 is working and not
disabled, layer L2 is working, and both layers produce erroneous results (i.e.
¬d(1) ∧ w(1) ∧ w(2) ∧ e(1) ∧ e(2))), the results produced by both layers are same.

[:d(1) ^ w(1) ^ w(2) ^
¡
(e(1) ^ :e(2)) _ (e(1) ^ :e(2))

¢
]

:d(2) ^ :c(2)

d(2)

[d(1) _ :w(1) _ :w(2)]

:d(2) ^ c(2)

[:d(1) ^ w(1) ^ w(2) ^ e(1) ^ e(2))] : Q(1;2)

[:d(1) ^ w(1) ^ w(2) ^ e(1) ^ e(2))] : 1¡Q(1;2)

[:d(1) ^ w(1) ^ w(2) ^ :e(1) ^ :e(2)]

[:d(1) ^ w(1) ^ w(2) ^ e(1) ^ e(2))] : 1¡Q(1;2)

[:d(1) ^ w(1) ^ w(2) ^ e(1) ^ e(2))] : Q(1;2)

[d(1) _ :w(1) _ :w(2)]

[:d(1) ^ w(1) ^ w(2) ^ :e(1) ^ :e(2)]

[:d(1) ^ w(1) ^ w(2) ^
¡
(e(1) ^ :e(2)) _ (e(1) ^ :e(2))

¢
]

Fig. 7. Probabilistic automaton for the Monitoring and Reconfiguration Sub-Module
in layer 2 (MRSM2).

MRSM2 uses the output from L1 to monitor L2. If both layers are deemed
as working by their voting mechanism, then MRSM2 compares the outputs from



both layers. Since L2 subsumes L1 in terms of capability, the output from L2 used
for comparison is a subset of the output from L2 with respect to the capability
of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1 or deemed as not work-
ing by its voting mechanism) or L2 is deemed as not working, L2 is disabled.
Note that we are not considering the recovery of a layer in this paper. In-
stead, recovery is implemented by shifting to a lower layer. Thus, once L2 is
disabled, it is never reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and L2 with respect to the
functional capability level of L1;
(a) If two outputs are different, then MRSM2 disables L2. Since MRSM2

cannot tell which output is right, it assumes L2 as incorrect and hence
disables it. The causes for two different outputs could be (1) one of the
layers produces an incorrect output but the other produces the correct
one (i.e., (¬e(1)∧e(2))∨(e(1)∧¬e(2))), or (2) both layers produce incorrect
results and the results are different (with probability 1−Q(1,2)).

(b) If two outputs are same, then L2 continues to function. The causes for
the same outputs could be (1) both layers produce the correct output,
or (2) both layers produce the same incorrect results (with probability
Q(1,2)). In the latter case the output of L2 is compromised (c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different cases of error distributions.
We let N denote the size of the sample space for outputs from layers. That is,
N is the number of data points for an output. We also assume that there is only
one data point deemed to be correct at a given time for a given output. As stated

before, P
(j)
1|k denotes the probability that only a single variant among k working

variants on layer j produces the correct result. In order to address dissimilarity
of variants and the impact of their independence of faults (or lack thereof) we

will introduce s
(j)
k and d

(j)
k as the correct and error similarity coefficients below.

The possibility that all the k variants on layer j produce the correct re-

sult, denoted as P
(j)
k|k, is P

(j)
k|k = (P

(j)
1|k )k · s(j)k , where 1 ≤ s

(j)
k ≤ (P

(j)
1|k )1−k.

The possibility that all the k working variants on layer j produce the ex-

actly same erroneous result, denoted as Q
(j)
k|k, is Q

(j)
k|k =

(1−P (j)

1|k)
k

(N−1)k−1 · d(j)k , where

1 ≤ d
(j)
k ≤ (N−1)k−1·

(
1−(P (j)

1|k)
k·s(j)k

)
(1−P (j)

1|k)
k

. To see the meaning of s
(j)
k and d

(j)
k , let’s

consider the following scenarios:

I. We consider the case in which the k variants are not real “variants” but
exact duplicates of each other and thus behave identically. This constitutes
a total lack of independence of faults, i.e., it is classic common-mode fault

behavior. For this case we may define s
(j)
k = (P

(j)
1|k )1−k and,

d
(j)
k =

(N − 1)
k−1 ·

(
1− (P

(j)
1|k )k · s(j)k

)
(1− P (j)

1|k )k
=

(N − 1)k−1

(1− P (j)
1|k )k−1



Therefore, we have,

P
(j)
k|k = (P

(j)
1|k )k · s(j)k = P

(j)
1|k

and,

Q
(j)
k|k =

(1− P (j)
1|k )k

(N − 1)k−1
· dk,j =

(1− P (j)
1|k )k

(N − 1)k−1
· (N − 1)k−1

(1− P (j)
1|k )k−1

= 1− P (j)
1|k = Q

(j)
1|k

That is, the probability of k variants producing the same result is reduced
to the probability of a single variant producing the exactly same result.

II. Now we consider the other extreme, i.e., true independence of faults for the

variants. Consider s
(j)
k = 1 and d

(j)
k = 1. Therefore we have,

P
(j)
k|k = (P

(j)
1|k )k · s(j)k = (P

(j)
1|k )k

and,

Q
(j)
k|k =

(1− P (j)
1|k )k

(N − 1)k−1
· d(j)k =

(1− P (j)
1|k )k

(N − 1)k−1

The equation for P
(j)
k|k indicates that k variants behave independently, so

that the probability that all k variants produce the correct result is P
(j)
k|k =

(P
(j)
1|k )k. The equation for Q

(j)
k|k further assumes that errors are distributed

uniformly among the sample space (i.e., data points), so the probability
that a particular erroneous data point will be produced by a variant is
1−P (j)

1|k
N−1 . Since there are N − 1 erroneous data points and k variants, the

probability that all the k variants produce the same erroneous result is

(N − 1) ·
(

1−P (j)

1|k
N−1

)k
=

(1−P (j)

1|k)
k

(N−1)k−1 .

Based on the previous discussion one can see that s
(j)
k and d

(j)
k are introduced

to describe the similarity of variants and its impact on error distribution. For an

implementation using N -variant technology, d
(j)
k shall be close to 1.

6 Computational Experiments

To assess the performance of our proposed N-variant architecture, we conducted
computational experiments on two models. The first model is the generalized
stochastic Petri-net as shown in Figure 3. The second model is the probabilis-
tic automaton-based model described in Section 5. The two models leverage
the benefits of the two different stochastic modeling techniques. The Petri-net
model in Figure 3 is more intuitive and it gives a higher-level view of the N-
variant architecture, but it lacks mechanisms such as the support for state and



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

Pr
ob

ab
ili

ty
 o

f S
er

vi
ce

 D
is

ab
le

d

Time (hours)

L1

L2

L3

Fig. 8. Probability of services being disabled for the GSPN model.

input variables. Furthermore, it does not support synchronized transitions. The
extension of probabilistic finite automaton supports these features and we use
them to model more complex mechanism such as voting algorithms inside layers.
For example, in the Petri-net model a variant is marked as not working if its
output is deemed incorrect. In more realistic scenarios, the voting mechanism
does not have an oracle to tell whether the output is correct or not, so it com-
pares all the working variants. Consider the two variants in layer L2 of F1 in
Figure 2, the Petri-net model marks both variants not working if both variants
fail. In a more realistic scenario, two failed variants may produce the same erro-
neous values and hence the voting mechanism marks both variants (incorrectly)
as working. This scenario missed by a Petri-net model is essential for modeling
information security since it describes a case in which layer L2 is compromised
(i.e., marked as working but producing incorrect output). Nevertheless, the bene-
fits of our probabilistic automaton-based model come at a price: it contains more
implementation details and hence it is less readable than the Petri-net model.

We use the Symbolic Hierarchical Automated Reliability/Performance Eval-
uator (SHARPE) [9] to analyze the Petri-net model and the probabilistic model
checker PRISM [5] to analyze the probabilistic automaton-based model. PRISM
translates a probabilistic automaton-based model to a discrete-time Markov
Chain (DTMC) and checks it against a temporal property in the PCTL, a prob-
abilistic extension of Computational Tree Logic (CTL). In our experiments, we
measure the probability that layer Lk is disabled within n step. The property
can be expressed in the PCTL formula: P [F≤n(d(k))]. The bounded temporal
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Fig. 9. Probability of services being disabled for the probabilistic automaton model.

operator F≤n(f) describes the bounded eventuality that the state formula f be-
comes true within n steps, and Pφ asks the model checker the probability that
the path formula φ is held on all the executions. Interested readers may refer to
[5] for the details of PCTL and PRISM.

Figure 8 shows the probability of L1, L2, and L3 being disabled for the GSPN
model. We assume that the failure rates of a variant in L1, L2, and L3 is 10−5,
10−4, and 10−3 per hour respectively. The cross-monitoring detection rates C1

and C2 in Figure 3 are both 10−6. Figures 9 shows the probability of L1, L2,
and L3 being disabled for the probabilistic automaton-based model, using the
same failure rates and N = 10 as the size of the sample space. Figures 9 shows
a slightly gain over Figure 8 for availability. That is because the probabilistic
automaton-based model considers the case that variants may produce the same
erroneous result while the Petri-net model does not.

7 Conclusion

This research analyzes the reliability, security, and performance of an N-variant
layered software architecture for survivable systems with multi-core hardware.
The primary goal of our proposed software architecture is to harness the compu-
tational power of under-utilized cores for improving reliability and survivability
of critical applications. The layered architecture design supports on-the-fly re-
configuration and allows the use of existing techniques such as those described



in [3, 4] at each layer. To leverage the benefits of two different stochastic anal-
ysis techniques, we propose reliability model using GSPN and a probabilistic
automaton model for use with probabilistic model checking. Whereas the GSPN
model gives a system designer an intuitive tool to outline the layered redun-
dancy scheme suitable for the required reliability specification, a probabilistic
automaton-based model is closer to the real behavior of the layered architec-
ture and it is of great value for an implementation. Modeling with two different
techniques increases the confidence in the models and simulations. The com-
putational experiments confirm that the two independently derived models are
compatible and it demonstrated that the pure theoretical model, i.e, the GSPN
model, is more conservative since it cannot account for value related false posi-
tives or false negatives, which were caught by the probabilistic automaton-based
model. Lastly, the probabilistic automaton-based model also addresses the de-
gree of independence, which ranges from total independence of faults to common
mode behavior, by introducing correct and error similarity coefficients.
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