Resilient Multi-core Systems:
A Hierarchical Formal Model for N-variant Executions

Axel Krings! Li Tan?

'University of Idaho
Moscow, ID 83844-1010

{krings,jeffery,rinker}@cs.uidaho.edu

ABSTRACT

This research presents a hierarchical formal model capable
of providing adjustable levels of service and quality of as-
surance, which is especially suitable for multi-core processor
systems. The multi-layered architecture supports multiple
levels of fault detection, masking, and dynamic load balanc-
ing. Unlike traditional fault-tolerant architectures that treat
service requirements uniformly, each layer of the assured ar-
chitecture implements a different level of services and infor-
mation assurances. The system achieves load balancing by
moving between layers of different complexity. Functionali-
ties at different layers range from essential services necessary
to satisfy the most stringent requirements for information
assurance and system survivability at the lowest layer, to
increasingly sophisticated functionalities with extended ca-
pabilities and complexity at higher layers. Low-layer func-
tionalities can be used to monitor the behavior of high-layer
functionalities.

At each layer of the assured architecture, N-variant imple-
mentations make efficient use of multi-core hardware. The
degree of the introduced redundancy in each layer deter-
mines the mix of faults that can be tolerated. The use of
hybrid fault models allows us to consider fault types rang-
ing from benign faults to Byzantine faults. Our framework
extends recent work in N-variant systems for intrusion detec-
tion, which are demonstrated to be special cases. Further-
more, it allows the movement in a tradeoff space between
(1) the levels of assurance provided at different layers, (2)
the levels of redundancy used at specific layers, which de-
termine the fault types that can be tolerated, and (3) the
desired run-time overhead.

Categories and Subject Descriptors

B.8 [Performance and Reliability]: Reliability, Testing,
and Fault-Tolerance; D.4.6 [Security and Protection]:
Invasive software; D.4.5 [Reliability]: Fault-tolerance; B.1.3
[Control Structure Reliability, Testing, and Fault-
Tolerance]: Redundant design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. CSIIRW ’09, April 13-15, Oak Ridge, Tennessee,
USA

Copyright 2009 ACM 978-1-60558-518-5 ...$5.00.

Clinton Jeffery!

Robert Rinker!

?Washington State University
Richland, WA 99354-1641
litan@wsu.edu

General Terms
Reliability, Security, Survivability, Multi-core, N-variant

Keywords

N-variant Execution, Survivability, Resilience, Security, Fault
Models, Adaptability

1. INTRODUCTION

Most new general purpose computers incorporate dual or
quad-core processors and higher numbers of cores are on the
horizon. Whereas in theory the computational capabilities
increase with the number of cores, it becomes difficult to
exploit sufficient parallelism to keep all cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability have been ex-
tensively used in fault-tolerant systems design, where the
evolution of redundancy schemes has gone from homoge-
neous redundancy to heterogeneous systems. Heterogeneous
redundancy implies that dissimilar functionalities which are
functionally equivalent are executed under the assumption
that this will reduce or eliminate common mode faults. Dis-
similarity is typically discussed in the context of N-version
programming dating back to the late 70s [1] and N-variant
programs. In N-version programming it is assumed that
several software development groups derive programs based
on the same specification in isolation. The expectation is
that this helps to reduce or eliminate common mode faults.
An approach inspired by N-version software is N-variant or
multi-variant software, where different variants are gener-
ated in a more automated fashion. Again, the expectation
is that a fault affecting one variant will not affect another.
In both cases a fault is detected if a difference is detected
between outputs generated by two versions or variants.

The availability of unused or underutilized cores has been
exploited to increase reliability, security and survivability.
Redundant executions in multi-core systems has been con-
sidered in [4] in the context of transient faults, where the
number of replicas determined the degree of fault tolerance.
Idle resources have also been used to increase security. For
example, in [3] a set of automatically diversified variants
execute on the same inputs. Any difference in referencing
memory of different variants can be observed and used to de-
tect the execution of injected code. Similarly, multi-variate
program execution is used in [7] to defuse buffer-overflow
vulnerabilities. Variants used different directions in mem-
ory allocation so that buffer overflows “crashed” into dif-
ferent neighboring memory, which could be detected. The

concept of N-variance can also be extended to include the
representation of data, as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. Multiple executions introduce of course significant
overhead. In fact, N-folding the amount of work to be done
is even augmented with the overhead of managing the dif-
ferent variants. However, given the availability of slack-time
in cores this overhead has the potential to be reasonably ab-
sorbed, i.e., if variants can execute on idle cores, then this
overhead can be largely absorbed. What remains is the over-
head induced by the framework that implements redundancy
management, i.e., the mechanisms that distribute inputs to
different variants and the treatment of the outputs.

What is the degree of redundancy required in the above
research? In general this depends on the type and number
of faults that are to be detected or masked and it is dictated
by the fault models assumed.

1.1 Fault Model

The system is subjected to diverse fault types arising from
diverse fault sources. The fault sources, describe the source
of the fault, e.g., radiation, physical destruction, heat, or
EMP, but may also result from malicious behavior or er-
roneous implementation of subcomponents or subsystems.
The later encompasses those fault sources typically addressed
in the context of the risks associated with the use of COTS
components of third parties. However, the source of faults
may originate in incorrect specifications or design.

The fault types, describe the types of faults considered
such as crash faults, transient faults, intermittent faults,
timing faults, value fault, or out-of-bound faults.

Lastly, fault behavior, (sometimes also called fault mode)
describes the effects specific fault types have. Fault behavior
is seen in the context of hybrid fault models (such as shown
in [2, 5, 8]). An example is the hybrid fault model in [§]
that considers three fault behaviors, i.e., benign faults, which
are globally diagnosable; symmetric faults, which imply that
values are wrong, but equally perceived by all components
that receive the values; and asymmetric faults, which have
no assumption on the fault behavior. The latter is often
called Byzantine fault. Within the context of this research
we are mostly concerned with the impact of faults on the
fault behavior, rather than fault sources or types. For ex-
ample, a buffer overflow may result in observable differences
in memory management. This in turn can lead to fault de-
tection and/or correction.

1.2 Background and Motivation

The previously discussed research uses N-variant execu-
tions in order to detect transient faults [4] and security re-
lated faults [3, 6, 7]. The different executions are considered
to be functionally equivalent. For example, in [4] the replicas
are managed dynamically by a hypervisor layer (a virtual
machine monitor) inserted between the hardware and the
operating system. The redundant functionalities execute on
replica partitions, where the number of partitions is dictated
by the fault model considered. In [7] multi-variat executions
have very high probability of exposing buffer overflows, e.g.,
as would be experienced during a buffer overflow attack.
Here the dissimilarity is mainly affecting the way memory
is allocated. Again the functionalities do not differ with re-
spect to their functional specifications. The same holds for
the work in [3]. In fact the application of the principle of

N-variant execution is based on functional equivalence of the
executions.

The research presented here departs from this equivalency
assumption. Whereas we still see the system as being com-
posed of functionalities, we assume that these functionalities
may have different levels of functional capabilities. Intu-
itively, by applying occam’s raiser we make the assumption
that lower levels of functionality (and thus capability) will
ultimately result in lower probability of failure, as will be
described in the context of Figure 1 in the next section.

2. SPECIFICATION MODEL AND ARCHI-
TECTURE DESIGN

Our approach starts with a specification model for spec-
ifying levels of functional capabilities. We then propose a
layered adaptive architecture design to realize the multi-
level functional capability model. Finally we introduce a
N-variant-based approach to implement the architecture de-
sign.

2.1 Multi-Level Functional Capability Model

We propose a formal model to specify functionality with
adjustable levels of capability. The model, which we call
Multi-Level Functional Capability Model (MLFCM), attaches
each functionality to layers of capability. In our approach,
MLFCM is used as part of requirement specification. Dur-
ing requirement elicitation, a development team works with
stake holders of a project to identify not just functionalities,
but also capability levels for each functionality. These ca-
pability levels specify how the system shall scale down its
service in case of faults or under attacks.

Figure 1: Multi-level functional capability model for
functionality F

Assume the view that a system is comprised of function-
alities F'. Figure 1 shows an example of the MLFCM for
functionality F'. The requirements for F' define three levels
of capabilities: F! defines the set of core operations that
are mission-critical, F2? includes F! and some non-critical
but value-added operations, and F? adds some more value-
added operations. We write F* < F? < F? where < is
a preorder that induces capability levels. The semantics of
=< is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system,
a functionality F' can be specified as a set of sequences of
operations T(F') (in requirement elicitation, often referred
as scenarios or flow of events). We represent a sequence of
operations as ((po(lo), Oo), (p1(11),01) - - -), where p; is the
operation at step ¢, I; is the input data set, and O; is the
output dataset. By default, T'(F') also includes a null se-
quence 7. In such a system, we can define that F7/ < FIT1if
and only if T(F7) C T(F7*!), where the piecewise inclusion
relation C is defined as follows:

(i) T(F7) C T(F'*); and,

(ii) For each {(po(Io),00), (p1(I1),01),---) € T(F"), there
is a sequence of operations (py (1), Op), (p1(11),01), - -+
and a non-decreasing function g such that p; = p'g(i),

Note that (i) states that every sequence of operations defined
at capability F7 shall also be included at capability F7*1.
Furthermore, (ii) states that each sequence of operations in
FIT! extends a sequence of operations in F?. Note that
(ii) doesn’t prohibit the introduction of a completely new
sequence of operations in F'T1. In such a case, the new
sequence of operations can be seen as an extension of the
default null sequence 7 € P(F7T1).

As an example, consider a multi-level secured record-keeping

system S in which each record d = (d*, d?) contains two sets
of data. Set d' contains mission-critical data and d? is a set
of non-mission-critical but value-added data. A function-
ality F, of system S is that a registered user can retrieve
data. For each registered user u, S stores his public key
K., and the user keeps his private key Kp,,. F. is de-
fined with two levels of capabilities. At level F}, a register
user can retrieve the mission-critical data associated with a
rfcord. T(F}) contains the following sequence of operations
t:

encryu(Kpr, “get_id”), req)(sentu,s({u, req}), acks)
decrys (K, req), “get_id”)(reads (id), {d", d*})
encrys(K%,,,d"), e")(sends u(e'), ack.)

deCTyU(Kpr'w 61)7 dl)

pub>

Py

At level F2, a register user can retrieve the mission-critical
data as well as value-added data. T(F?) contains a sequence
of operations t? as follows:

(encryu(Kgfm, “get_id”), req)(sentwu,s({u, req}), acks)
(decrys(Kpyup, meq), get,icl”)(readS (id), {d*, d*})
(enery. (K (', @), {e! e} (sendou ({6 7)), ack,)
(decryu (K, {e', €% }), {d", d*})

It is straightforward to see that T(F}) C T(F?), and
hence F! < F?.

The purpose of MLFCM is to specify not just functional
requirement, but also requirements for reconfiguration and
adaptiveness. It has two distinctive features to serve its
purpose:

First, the model associates each functionality with capa-
bility levels, which specify reconfiguration requirements for
the functionality. It states that, in the event of a fault, e.g.,
the system has been compromised, a system shall scale back
its services in an orderly manner by following capability lev-
els defined in MLFCMs.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation C we proposed for transaction-based sys-
tems. It requires that system behavior at a higher capability
level shall be an extension of behavior at a lower capability
level. Hence, we can use behavior at a lower capability level
as a reference for monitoring behavior at the higher capabil-
ity level. Therefore, an implementation for capability levels
provides a path for a system to scale back itself. Next, we
will discuss a architecture design that facilitates reconfigu-
ration as specified by a MLFCM.

2.2 Layered N-variant Architecture

To realize the reconfiguration requirements specified in
MLFCM, we propose a layered adaptive architecture design

similar to the N-variant techniques in [3, 7]. Figure 2 shows
an example of the adaptive N-variant architecture. The
architecture has a two-dimension layered structure. Each
vertical layer realizes a capability level. It implements se-
quences of operations specified for its capability level. A
layer may be disabled or nonexistent. The capability level
of the entire functionality is decided by its highest enabled
layer. Each layer is a collection of variants implementing its
capability level. Variants are systematically diversified so
that it is unlikely that that a common mode fault can occur,
e.g., for a given fault model, an attacker can not compromise
all the variants without being detected and/or the fault be-
ing masked. One could argue that a lower layer should have
more variants to improve resilience of the functionality.

2|

z|

< |

|

Sl = T

© A 1 """
: 1
L Vl V2 V3

N-variant

Figure 2: A layered adaptive N-variant architecture
design for MLFCM in Figure 1

2.3 Adaptability and Reconfigurability

The layered adaptive N-variant architecture includes a
monitoring and reconfiguration module. The module serves
as a filter between layered N-variant functionalities and other
sensitive components. The module intercepts calls to sensi-
tive components. It uses sequences of operations in a layer
to decide whether sequences of operations in the layer above
are legitimate.

The layers in the adaptive N-variant architecture serve
two purposes:

First, operations executed by a lower layer are used as a
reference for monitoring at a higher layer. In section 2.1
capability levels in a MLFCM are defined in such a way
that a sequence of operations specified at a higher level is
an extension of some sequence of operations specified at a
lower level. In our layered adaptive N-variant architecture,
all the layers process incoming requests concurrently. Since
a layer L is an implementation of a capability level F* in
MLFCM, a sequence of operations executed by layer L shall
be included in a sequence of operations executed by layer
L1, Should this not be the case it indicates problems in
L. The reason for this is because the lower layer L' is
realized using a higher degree of N-variant of simpler (and
thus lower complexity) implementations, and hence L shall
be considered more reliable than L‘™'. This argument is
analogous to parallel reliability block diagrams. Recall that
the unreliability of a parallel system is equal to the product
of the unreliabilities of all parallel components. Here the
number of components (degree of N-variant) at layer L* is
larger than that of L™ and the fail-rates of the components
at L* are smaller that those at layer L*t!, due to its simpler

implementation. The result is a higher reliability at layer
L.

Second, layers provide a reconfiguration plan in which a
functionality can scale back its services in an orderly man-
ner, thus providing graceful degradation. A layer L serves
as the backup for layer L**! above it. A lower layer forgoes
some functional capability in lieu of improved dependabil-
ity. If the monitoring and reconfiguration module detects
faults in a layer Lt it disables L'*' and the system au-
tomatically scales its capability to the level implemented by
L. For completeness shake it should be noted that capa-
bilities can not only be decreased, but also extended should
the need arise, e.g., after recovery or repair.

As an example, consider the adaptive N-variant architec-
ture design for the multi-level record-keeping system in Sec-
tion 2.2. The design contains two layers, L} and L2, that im-
plement capability levels Fi* and F2, respectively. Requests
for retrieving data are sent to both layers for processing. If
a request is from a registered user, L! executes ¢! and L2 ex-
ecutes t*. Note that t' and ¢? include a command reads (id)
to access S’s protected database subsystem. A monitoring
and reconfiguration module intercepts all the calls to the
database subsystem. Query reads(id) from L2 is released
if and only if a similar call reads(id) also received from L.
If the monitoring and reconfiguration module does not re-
ceive a call reads(id) from L, it infers that layer L2 has
been compromised and hence it disables L2. Consequently
S scales its capability to F!, which is implemented by L.
This action constitutes a survivability feature with respect
to the functionality F;..

The layered adaptive N-variant architecture is designed
for improving system survivability for mission-critical ap-
plications. By implementing functionalities in layers the
capability of shifting to a lower layer upon detection of a
fault provides a contingent plan that allows a system to scale
back its services towards essential services as the result of
faults or malicious attacks. The layered architecture is also
designed to support information security. As can be seen
in the example above, the monitoring and reconfiguration
module ensures that sensitive information of d* will not be
leaked by a higher layer, even the latter is compromised by
an attacker. In the example, a fault detection at layers L°
and L' resulted in an action by the monitor, blocking the
release of d' and d2.

2.4 Special Cases

The N-variant approaches described in [3, 4, 6, 7] are ac-
tually special cases and can be described within the architec-
ture. First, it should be noted that all of these approaches
have specifications and implementation at the same level and
layer respectively. This means that the approaches deal with
fault detection and possible treatment dependent on the de-
gree of redundancy. However, adaptability as described in
subsection 2.3 is not supported.

The systems above can be described at one level. For
example, the multi-variant scheme described in [7] operate
on two variants at later L1, e.g., Vi and V4. The authors
mainly focus on two variant memory referencing. The model
in [3] can be specified similarly.

It should be noted however that fault masking is actually
simpler than typically observed in redundant systems, e.g.,
k-of-N or NMR. For example, in a triple modular redundant
systems two faulty modules can produce the same result and
consequently the TMR would vote on the incorrect value in

the majority vote. Given the schemes described in [7] and
[6] it is statistically very unlikely that two fault modules
produce the same fault. This is very advantageous when
trying to determine thresholds for non-faulty values and to
reduce the degree of N-variants at each layer.

3. CONCLUSION

This research introduced a new way of looking at N-variant
executions by defining a hierarchical formal model for N-
variant executions especially suitable for systems based on
modern multi-core architectures. In one dimensions of the
model N-variant implementations allow detection and mask-
ing of faults, dependent on the the degree of variants and
the fault model. At this layer we can take full advantage of
many different solutions that have been presented in the lit-
erature associated with multi-variant systems. In the other
dimension adaptation is introduced, which is an integral part
of a survivable or resilient system. The basis for adaptation
is the introduction of different levels of specification that re-
sult in layers of implementation, each of which in turn can
be N-variant. Providing a hierarchy of capabilities, where
lower level specifications are subsets of higher level speci-
fications, has several advantages. First, lower level func-
tionalities can effectively cross-monitor higher layers, which
has positive implications for security and reliability. Second,
during adaptation executions can be shifted to lower layers
which increases survivability and resilience.

4. REFERENCES

[1] A. Avizienis , The Methodology of N-version
Programming, Software Fault Tolerance, edited by M.
Lyu, John Wiley & Sons, 1995.

[2] M.H. Azadmanesh, and R.M. Kieckhafer, Ezploiting
Omissive Faults in Synchronous Approximate
Agreement, IEEE Trans. Computers, 49(10), pp.
1031-1042, Oct. 2000.

[3] B. Cox, et. al., N-Variant Systems A Secretless
Framework for Security through Diversity, 15th
USENIX Security Symposium, Vancouver, BC,
August 2006

[4] C.M. Jeffery, and J.O. Figueiredo, Towards
Byzantine Fault Tolerance in Many-core Computing
Platforms, 13th IEEE International Symposium on
Pacific Rim Dependable Computing, 2007.

[5] F. J. Meyer, and D. K. Pradhan, Consensus with
Dual Failure Modes, IEEE Transactions on Parallel
and Distributed Systems, Vol. 2, No. 2, pp. 214-222
April, 1991.

[6] A. Nguyen-Tuong, et. al., Security through
Redundant Data Diversity, 38th IEEE/IFPF
International Conference on Dependable Systems and
Networks, Dependable Computing and
Communications Symposium. Anchorage, June 2008.

[7] B. Salamat, et. al., Multi-Variant Program
Execution: Using Multi-Core Systems to Defuse
Buffer- Overflow Vulnerabilities, International
Conference on Complex, Intelligent and Software
Intensive Systems, Vol. 00, pp. 843-848, 2008.

[8] P. Thambidurai, and Y.-K. Park, Interactive
Consistency with Multiple Failure Modes, Proc. Tth
Symp. on Reliable Distributed Systems, Columbus,
OH, pp. 93-100, Oct. 1988.

