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Abstract—Supply chain [2], [6] is an important component
of business operations. Understanding its stochastic behaviors is
the key to risk analysis and performance evaluation in supply
chain design and management. We propose a novel computational
framework for modeling and analyzing the stochastic behaviors
of a supply chain. The framework is based on probabilistic model
checking, a formal verification technique for analyzing stochastic
systems. Our approach is two-fold: first, we developed Stochastic
Supply Chain Model (SMF), a formal framework for modeling
stochastic supply chains based on Extended Markov Decision
Process (EMDP); second, we proposed a model-checking-based
formal technique to automate the analysis of a stochastic supply
chain. Our model-checking-based approach leverages benefits
of recent advances in symbolic probabilistic model checking to
improve the efficiency and scalability of decision procedures.
Using the temporal logic PCTL [1] and the symbolic probabilistic
model checker PRISM [4], we are able to express and check
complicate temporal and stochastic properties on supply chains.
Finally, we demonstrate the capability of our model-checking-
based approach by testing it on a variety of stochastic supply
chain models.

I. INTRODUCTION

In today’s global economy, companies are increasingly
relying on oversea suppliers to cater differentiated customer
requirements and gain competitive edge in the market. This
dependency on oversea suppliers also increase uncertainties
and risks to already complex global supply-chain design and
management. Recent recalls on toys and food in the United
States serve as a weak-up call for risks in global supply chains:
if not adequately being evaluated and addressed, catastrophic
events like these could paralyze a supply chain and cause
substantial financial loss to a company. Because the size
of a global supply chain and the complexity arising from
interactions among different units render traditional modeling
and analysis methods intractable, evaluating and managing
risks in a global supply chain presents a daunting challenge
in a company’s logistic planning. Risks root from uncertainty
and stochastic elements in supply chains, and understanding
stochastic behaviors of a supply chain is the key to assessing
and managing risks in supply chains.

We propose a novel computational framework for mod-
eling and analyzing stochastic behaviors of a supply chain.
The framework is based on probabilistic model checking
[1], a formal verification technique developed in Computer
Science for analyzing stochastic systems. Recent advances

[4] in symbolic probabilistic model checking have drastically
improved its efficiency and scalability. In past several years the
application of probability model checking has been extended
from compute-based systems to a wide range of other subjects
such as biological pathway [3]. A typical supply chain contains
a large number of stochastic elements in manufacturing and
transportation processes. The scale and complexity of the
problem make it an ideal candidate for applying probabilistic
model checking. Yet due to the interdisciplinary nature of this
research, to the best of our knowledge this is the first reported
effort to apply probabilistic model checking to the area of risk
analysis in supply chain management.

Our approach is two-fold: first, we developed a formal
framework for modeling a stochastic supply chain. The frame-
work, Stochastic Merchandise Flow Model (SMF) is based
on an extension of Markov Decision Process. The frame-
work provides a rigorous approach for modeling dynamics
of stochastic supply chains and it removes ambiguity in a
supply chain design. SMF enables the composition of both
stochastic elements, for example, warehouses that may fail,
and nondeterministic elements, for example, routing decisions,
in a single framework. SMF also provides the foundation
for the formal analysis of a stochastic supply chain; second,
we established a procedure for applying probabilistic model
checking to stochastic supply chains. A probabilistic model
checker such as PRISM [4] checks a stochastic system against
a property encoded in a temporal logic. Use of a temporal
logic allows us to customize and check complicate stochastic
properties which are not supported by existing domain-specific
and ad-hoc supply-chain risk analysis tools.

To assess the capability of our approach, we apply it to a
variety of supply chain designs and report our experimental
results. We use the symbolic probabilistic model checker
PRISM in our experiments. PRISM supports the analysis of
Markov Decision Process and uses a bounded variant of the
probabilistic temporal logic PCTL to encode properties. We
will discuss our framework in context of PRISM. The rest
of the paper is organized as follows: Section II provides a
brief introduction to probabilistic model checking and the
symbolic probabilistic model checker PRISM. Section III
discusses SMF, a formal framework we introduced to model
stochastic supply chains. Section IV introduces the procedure
we proposed for using probabilistic model checking to ana-



lyze stochastic supply chains. In Section V we discuss our
experimental results. Finally Section VI concludes the paper.

II. PROBABILISTIC MODEL CHECKING WITH PRISM

Model checking is a formal verification technique that
algorithmically checks a dynamic system against a temporal
property encoded in a temporal logic. Probabilistic model
checking extends classical model checking techniques with
the ability of reasoning stochastic behaviors of a system. In
addition to simple “yes/no” answer, a probabilistic model
checker also returns the probability with which a property
may hold on a system. Probabilistic model checking has been
used to analyze performance and reliability issues for a variety
of subjects in Computer Science and other fields [5] where
computational assessment of stochastic behaviors is the key to
the answers. A recent advance in probabilistic model checking
is the development of sophisticated symbolic techniques that
greatly improves the scalability and efficiency of decision
procedures. Since we use the symbolic probabilistic model
checker PRISM in our experiment, We will discuss proba-
bilistic model checking in context of PRISM.

Probabilistic model checking starts with the formal mod-
eling of stochastic systems. Stochastic supply chains we are
studying have both probabilistic elements and nondeterministic
elements. A classical method for modeling a stochastic system
with nondeterministic behaviors is Markov Decision Process
(c.f. [7]). Definition 1 defines EMDP, an extension of Markov
Decision Process that we use as the mathematical foundation
for our modeling framework.

Definition 1 (Extended Markov Decision Process): An Ex-
tended Markov Decision Process (EMDP) is a tuple
〈V,D,w0,D, P, N〉, where,

1) V = 〈v1, · · · , vk〉 is a vector of internal variables and
its domain is W = W1 ×W2 × · · · ×Wk;

2) D = 〈d1, · · · , dl〉 is a vector of external variables and
its domain is Z = Z1 × Z2 × · · · × Zk;

3) w0 = 〈w0
1, · · · , w0

k〉 is the initial valuation of W.
4) P : W × Z → 2W×(0,1] is the probabilistic tran-

sition function, such that for every w ∈ dom(P ),∑
〈w′,p〉∈P (w,z) p = 1.

5) N : W × Z → 2W is the nondeterministic transition
function, such that dom(N) ∩ dom(P ) = ∅.

2

It shall be noted that EMDP is not more expressive than
Markov Decision Process. Nevertheless, it does bring several
benefits that makes stochastic system modeling more effective
and concise: first, EMDP uses a vector of variables to encode
the state space of a Markov Decision Process. This allows
us to represent sets of states and transitions more efficiently.
For example, one may use a predicate (vi > a) ∧ (vj < b)
to represent the set of all the states such that vi > a
and vj < b. Second, we make a clear distinction between
probabilistic transitions and nondeterministic transitions by
representing them separately using two different transition
functions. In context of stochastic supply chains, probabilistic

f ::= A | ¬f | f ∧ f | [P./p]φ
φ ::= Xf | fUf | fRf

where A ∈ A is an atomic proposition, p ∈ [0, 1],
and ./∈ {≤,≥, <, >}.

Fig. 1. The syntax of PCTL [1], [4]

transitions represent risks in operations, for example, the
probability of failure of a warehouse, and nondeterministic
transitions represent options in scheduling such as how to route
merchandise flows. As an extreme case, when an EMDP has
only probabilistic transitions, it is reduced to Discrete Time
Markov Process, in which system behaviors are left to the
probability, as shown in Figure 3. On the other hand, when
an EMDP has only a nondeterministic transition function, it
is reduced to a nondeterministic finite automaton, as shown in
Figure 4.

We use the temporal logic PCTL [1] to express properties
we want to check on a stochastic supply chain model. PCTL
is a probabilistic extension of Computation Tree Logic (CTL).
The syntax of PCTL is given in Figure 1.

PCTL has two types of formulae: state formulae and path
formulae. Semantically a state formula represents a set of
states, and a path formula represents a set of paths. We let
variables φ, ψ, · · · and f, g, · · · range over path formulae and
state formulae, respectively. PCTL is a propositional logic and
it is built upon atomic propositions. An atomic proposition A
represents a set of states by its semantic definition. Particularly,
the atomic propositions T and F stand for the set of all the
states of a stochastic system and the empty set, respectively.

PCTL uses a set of path operators next (X), until (U), and
release R to express temporal patterns. A path formula Xf
holds on a path s1s2 · · · if s2 satisfies f . f2Rf1 holds on
a path ρ if f1 holds for every state on ρ unless a state si

satisfying f2 “releases” such obligation, in which case f1 does
not have to hold for states after si. f1Uf2 holds on a path ρ
if f1 holds for every state “until” a state si satisfying f2,
after which f1 may or may not hold. Note that a subtlety
is that f2 eventually holds at some state on β in f1Uf2 but
not necessarily so in f2Rf1. We also use two additional path
operators always (G) and eventually F. Gf and Ff stand for
FRf and TUf , respectively.

PCTL extends CTL with the probabilistic operator P , which
attaches a probability to a path formula. For example, P>0.5φ
is true for a state s if the probability that φ holds on the
paths from s is greater than 0.5. PRISM also allows a user to
query the probability associated with a path formula. Model
checking P=?φ on a state s will yield the probability that φ
holds on the paths from s. PRISM also supports a bounded
version of path operators. For example, P=?(F≤6f) queries
the probability that a state satisfying f can be reached within
6 steps from the current state. Interested readers may refer to
[1] for a detailed discussion on the semantics of PCTL.

Since a Markov Decision Process may have nondetermin-
istic elements, the probability associated with a path formula



s1 s2

w 1

r1

w 2 w 3

r2 r3 r4 r5 r6

0.95/0.9 0.98/0.8

0.92/0.8 0.91/0.9 0.97/0.7

0.98/0.99 0.92/0.87

Fig. 2. A two-echelon stochastic supply chain Se

needs to be decided by checking all the possible resolutions
of nondeterminism. PRISM supports two variants of P for
model-checking Markov Decision Process: Pmax represents
the best-case scenario in which a resolution of nondeterminism
maximizes the probability that a path formula holds, and Pmin

represents the worst-case scenario. Note that in our stochastic
supply chain modeling, routing decisions are modeled as
nondeterministic transitions. We use Pmax to force PRISM to
search for the best routing strategy that improves the stochastic
performance of a supply chain.

III. MODEL STOCHASTIC SUPPLY CHAINS

The first step of model checking is to model a subject
in a formalism that facilitates automated analysis. Before we
introduce the formalism for modeling stochastic behaviors of
a supply chain, we discuss the intuition behind the formal
modeling. To model the dynamics of a supply chain, we
need to identify its states and transitions. A typical supply
chain consists of suppliers, warehouses, retailers, and routes
connecting them. Figure 2 shows an example of a two-echelon
supply chain network. The label of an component indicates
the probabilities of an element failing and recovering. For
example, the label for the warehouse w1 indicates that at
any time it may fail with the probability of 0.92, and when
that happens, it may go back to the operational mode with
the probability of 0.8 at any time afterwards. By default, an
element without a label is always operational.

The purpose of a supply chain is to transfer goods. The
dynamics of a supply chain is characterized by merchandise
flowing among it. To identify the state of a supply chain, we
need to consider the movement of merchandise and the status
of each individual element of the supply chain. For instance,
suppose that the supply chain in Figure 2 carries two products,
GA and GB . The state of the supply chain can be decided by
A’s and B’s locations, and the status of each element, i.e., if an
element is still operational. The stochastic model we are about
to propose is the synchronized composition of element models
and merchandise flow models, each of which is represented by
an Extended Markov Decision Process (EMDP).

Definition 2 (Element EMDP): An element EMDP (E-
EMDP) is an EMDP 〈〈w〉, w0, P 〉, where,

v =1

v =0

ped :v =0

pd e:v =1

1-ped :v =1

1-pd e:v =0

Fig. 3. The state space and transitions of the E-EMDP for the warehouse
w1

1) w is the only variable and its domain is Boolean. Seman-
tically, w stands for whether the element is operational.

2) The probabilistic transition function P is defined as
follows: P (T) = {〈F, ped〉, 〈T, (1−ped)〉} and P (F) =
{〈T, pde〉, 〈F, (1− pde)〉}.

3) w0 is the initial value of w.
We call w the status variable, ped operational probability, and
pde recovering probability. 2

Intuitively, an element EMDP represents a two-state Markov
Decision Process. An element can either be operational or not.
If it is operational, it may fail with the probability of ped next
time. If it is already non-operational, next time it may recover
with the probability of pde. Figure 3 shows the state space and
transitions implied by the element EMDP for the warehouse
w1 in 2.

Definition 3 (Merchandise EMDP): Let S be a stochastic
supply chain with k elements, and let wi be the status variable
of the i-th element. A merchandise EMDP (M-EMDP) for
a product carried by S is a EMDP 〈〈v〉, 〈w1 · · ·wk〉, f0, N〉,
where,

1) v is the only variable and its domain is the set of
facilities in S . A facility can be one of the following
elements: a supplier, a warehouse, or a retailer.

2) The nondeterministic transition function N is defined
as follows: for every facility f and every route ff ′

emanating from it, N(〈f〉, 〈w1 · · ·wk〉) is,
• {〈f〉, 〈f ′〉}, if wef

= we′f = weff′ = T, or;
• {〈f〉}, otherwise.

3) f0 is the initial value of v.
We refer to v as the location variable. 2

A merchandise EMDP represents how a product is transported
through a stochastic supply chain. The location of the product
is denoted by its location variable v. v’s initial value f0

represents the manufacturing facility for the product. The
nondeterministic transition function specifies how the next
location is chosen: the product can either stay at its current
location f , or in case that f , f ′, and the route ff ′ are
all operational, the product may also be transferred to f ′.
Unlike the probabilistic transition function in an E-EMDP,
the transition function of an M-EMDP is nondeterministic: the
model does not specify in what probability the next location is
chosen from a list of eligible locations. A probabilistic model
checker has to consider all the possible ways of resolving
nondeterminism. In Section IV we take advantage of such
capability and ask a probabilistic model checker to search for
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Fig. 4. The state space and transitions of the M-EMDPmodel for a product
GA manufactured in s1.

the best scenario for resolving nondeterminism. The answer
produced by the model checker implies the optimal strategy
for scheduling merchandise flow.

Figure 4 shows the the state space and transitions implied
by the M-EMDP for a product manufactured at the facility
s1. Note that it has a similar structure as the subset of
its underlying supply chain in 2. This is because M-EMDP
depicts the flow of a product in a supply chain and it shall
have a similar structure as part of the supply chain the product
may go through.

Definition 4 (Stochastic Merchandise Flow Model): Let S
be a stochastic supply chain and P a set of products trans-
ported in S , the stochastic merchandise flow (SMF) model of
S is a synchronized parallel composition of EMDPs in E∪M,
where E is the set of all the E-EMDPs for elements of S and
M is the set of all the M-EMDPs for products in P . 2

We use Stochastic Merchandise Flow Model in Definition
4 to model the dynamics of a stochastic supply chain. A SMF
model is a synchronized parallel composition of all the E-
EMDPs and M-EMDPs. We write NS = ||n∈E∪M n for the
SMF model of a stochastic supply chain S , where E and
M are the set of E-EMDPs and the set of M-EMDPs in
S, respectively. States of a SMF model are identified by the
evaluation of status variables in E and location variables in
M. Transitions are synchronized compositions of transitions
of all the E-EMDPs in E and M-EMDPs in M. That is,
〈w1, · · · , wi, v1, · · · , vj〉 → 〈w′1, · · · , w′i, v′1, · · · , v′k〉 is a tran-
sition of NS if and only if for every l such that 1 ≤ l ≤ i,
wl → w′l is a transition of el ∈ E and for every k such that
1 ≤ k ≤ j, vk → v′k is a transition of mk ∈ M. Intuitively,
a transition of NS represents a discrete step in supply chain
operations. During the discrete step, an E-EMDP may flip its
status variable with a given probability, and an M-EMDP may
nondeterministically decide what will be the next location of
the product it represents.

IV. ANALYZE STOCHASTIC SUPPLY CHAINS

We use probabilistic model checking to automate the anal-
ysis of stochastic supply chain models. As we discussed in

Section III, the underlying formalism for stochastic supply
chain models is EMDP, an extension of Markov Decision
Process. Traditionally decision procedures for Markov Deci-
sion Process use dynamic programming technique and they
are usually customized for targeted problem domains. Our
choice of using probabilistic model checking as underlying
analysis technology brings us several benefits: first, recent
advances in probabilistic model checking provide efficient
symbolic decision procedures. Symbolic probabilistic model
checkers such as PRISM [4] use sophisticated symbolic tech-
niques including Binary Decision Diagrams (BDD) and Multi-
Terminal Binary Decision Diagrams (MTBDD) [8]. By using
probabilistic model checking, we are able to leverage benefits
of efficient decision procedures developed for verifying large-
scale computer-based systems. Second, traditionally decision
procedures analyze Markov Decision Processes by attaching
to each transitions or states a reward and then optimizing a
reward-based cost function. Although the reward-based ap-
proach is appealing, it also has its limitations. In comparison,
a probabilistic model checker provides a generic decision
procedure which not only supports the reward-based analysis
approach but also enables us to specify sophisticated stochastic
and temporal properties in a temporal logic. For example,
the probabilistic model checker PRISM uses the probabilistic
Computational Tree Logic (PCTL), and we can specify a
probabilistic temporary property Preach: what is the possibility
that a product A can be delivered to a retailer ri within 4 days
after arriving a warehouse wk.

As part of analysis activities, we need to specify stochastic
properties in a temporal logic, in our case, in PCTL. The basic
building blocks of a PCTL formula are atomic propositions.
Semantically an atomic proposition refers to a set of states
in which by definition the proposition holds. In practices, we
use an atomic proposition to label a set of states of special
interest in analysis. Since a state is presented by a valuation of
variables in EMDP, we may define an atomic proposition using
a predicate over variables. For instance, to specify states of a
product A “arriving a warehouse wk”, we define an atomic
proposition Awk

= (vA = wk), where vA is A’s location
variable. Note that the predicate vA = wk only constrains vA’s
value, therefore, Awk

specifies a set of states. That is, Awk

holds on any state in which A is in the warehouse wk. Other
state information, whether wk is operational, is irrelevant to
the semantics of Awk

.
The probabilistic model checker PRISM supports an exten-

sion of PCTL using bounded path formulae, which allows us
to specify the number of discrete steps a property shall hold.
As part of modeling and analysis tasks, one needs to decide
the semantics of a discrete step in a SMF model based on the
planning horizon of supply chain operations. For instance, if
operations such as shipment are scheduled in term of days, a
discrete step can be one day.

PCTL supports a set of temporal operators in the Computa-
tion Tree Logic (CTL) such as U (until), R (release), X (next),
and their bounded version. Using PCTL, one may also encode
the property such as in what probability a property holds on a



Fig. 5. The stochastic performance of the supply chain Sc

Fig. 6. The stochastic performance of Scw , a cross-warehouse shipment
variant of Sc w.r.t. the direct shipment ( Pmax=?[G((v1 = w3 ∧ v2 =
w1) → F≤4Aarrived)])

system. For example, Pmax≥T (G(vA = wk)F≤3(vA = ri))
tests the threshold of probability that the product A can
be delivered to ri 3 days after it arrives at the warehouse
wk. In addition, PRISM supports the use of “?” in place
of a real number to query in what probability a property
holds. In PRISM, the PCTL formula for the property Preach

is Preach = Pmax≥?(G(vA = wk)F≤3(vA = ri)). After
checking Preach on a stochastic supply chain model, PRISM
returns the probability that the property holds for the model.

V. EXPERIMENTS

To assess the feasibility of our model-checking-based anal-
ysis technique and evaluate its capability, we use it to check

Fig. 7. The stochastic performance of three echelon variant of Sc w.r.t. the
PCTL property Pmax=?[G((v1 = w2 ∧ v2 = w2) → F≤4Aarrived)]

a variety of stochastic supply chain models. In this section
we report our experiments on supply chain models with three
different topologies. All the experiments are carried out on a
Windows Vista machine with a 2.0 GHz Intel Core 2 Duo
T7300 processor and 1 GB memory. We use PRISM version
3.2 beta in our experiments.

Figure 1 measures the stochastic performance of the supply
chain Sc in Figure 2. In the experiment, we use two products
A and B, produced by the suppliers s1 and s2 respectively, to
measure Sc’s performance under different configurations. A
and B are destined for the retailer r3 and r5, respectively.
We measure their probabilities of arrivals under different
configurations: W2DOWN and W2UP stand for the failure
and recovery probabilities of the warehouse w2, and these
probabilities vary in our experiment. Other warehouses, w1

and w3, have the fixed failure and recovery probabilities
of 0.5. To express the property that the products arrive at
their destination within 4 steps, we use the PCTL formula
Pmax=?[F≤4(vA = r3) ∧ (vB = r5)], where vA and vB

are A’s and B’s location variables with the initial values
of s1 and s2, respectively. Figure 5 shows that a robust
warehouse, indicated by a low failure probability and a high
recovery probability, increases the probability that a product
arrives at its destination on time. Model construction and
model checking took 0.111 second and 0.059 second for this
experiment in this experiment..

Figure 2 measures the stochastic performance of a cross-
warehouse shipment variant of Sc. The variant, Scw adds
routes among warehouses and enables traffic among neigh-
boring warehouses. Scw removes the routes s1w2 and s2w3

from Sc. We test two different settings for products A and
B. In the direct shipment A and B are manufactured by s1

and s2, and shipped to r3 and r5. The PCTL property for the
direct shipment setting is Pmax=?[F≤4(vA = r3)∧(vB = r5)].
In the cross-warehouse shipment A and B are shipped to r5

and r3. The PCTL property for the cross-warehouse shipment
setting is Pmax=?[F≤4(vA = r5) ∧ (vB = r3)]. Note that all
the routes from s1 to r5 or from s2 to r3 have to involve some
cross-warehouse traffic. WUP is the failure probability of the
warehouses. Their recovery probability is fixed at 0.5. Figure
6 shows that a quick recovery, indicated by an arising recovery
probability, improves the probability that the products arrive
at their destinations on time. It also indicates that the cross-
warehouse shipment is affected most by warehouses’ recovery
probability since it involves more stops at warehouses than the
direct shipment does. Model construction and model checking
took 0.164 second and 0.257 second in this experiment.

Figure 3 measures the stochastic performance of a three-
echelon variant of Sc. The variant, Se3 adds one more layer
warehouses underneath the existing layer of warehouses. A
warehouse can ship to its child and its immediate successor
on the second level of warehouses. This extra layer gives Se3

the capability of re-routing some shipment if necessary and
it also increases complexity in supply-chain design. Like in
the first experiment, we measure the probabilities of arrivals
under different configurations but with some variances: instead



of changing the probabilities for the warehouse w2 in Figure
5, we change the probabilities for the entire second layer of
warehouses. We also require that both products stop by the
warehouse w2 so we can take into account Se3’s ability to re-
reroute products to their destination. The property is encoded
in PCTL as Pmax=?[G((vA = w2)∧(vB = w2) → F≤4(vA =
r3) ∧ (vB = r5))]. Figure 7 shows that an improvement on
the robustness of warehouses will contribute positively to the
probability of arrival. Model construction and model checking
took 0.13 second and 1.497 second in this experiment.

VI. CONCLUSION

We proposed a novel computational framework for model-
ing and analyzing stochastic supply chains. Our introduction
of probabilistic model checking to the domain of supply chain
risk management improves the efficiency and scalability of
existing decision procedures. We introduced a formal model-
ing framework SMF for stochastic supply chains. Based on
an extension of Markov Decision Process, SMF rigorously
defines the syntax and semantics of a supply chain and
facilitates formal analysis. We also discussed the procedure we
proposed for using a probabilistic model checker to analyze
a stochastic supply chain model. Particularly we discuss how
one can express in the temporal logic PCTL the stochastic
properties of a supply chain. Our experiments demonstrate
the capability of our approach on stochastic supply chains of
different configurations.

This work may be extended in several directions. For exam-
ple, Our focus in this research is on transportation processes
in supply chain operations. In the future we want to extend
our approach to include other elements of a supply chain
such as manufacturing process. SMF we introduced is also
capable of specifying interactions among different elements
in supply chain. In the future we want to use SMF to study
such interactions and their implication on risks in a supply
chain operation.
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