
State Coverage Metrics for Specification-Based
Testing with Büchi Automata

Li Tan

School of Electrical Engineering and Computer Science
Washington State University, Richland, WA 99354

litan@wsu.edu

Abstract. Büchi automata have been widely used for specifying lin-
ear temporal properties of reactive systems and they are also instru-
mental for designing efficient model-checking algorithms. In this paper
we extend specification-based testing to Büchi automata. A key ques-
tion in specification-based testing is how to measure the quality (rele-
vancy) of test cases with respect to system specification. We propose
two state coverage metrics for measuring how well a test suite covers
a Büchi-automaton-based requirement. We also develop test generation
algorithms that use counter-example generation capability of an off-the-
shelf model checker to generate test cases for the coverage criteria inferred
by these metrics. In our experiment we demonstrate the feasibility and
performance of the coverage criteria and test generation algorithms for
these criteria. In [13] we proposed testing coverage metrics and criteria
for properties in Linear Temporal Logic (LTL) and referred to the new
approach as property-coverage testing. This research shares the same
motivation as in [13] and it extends property-coverage testing to speci-
fications in Büchi automata. Since automaton minimization techniques
can be used to reduce the structural diversity of semantically equivalent
Büchi automata, we argue that a coverage metric based on Büchi au-
tomata is less susceptible to syntactic changes of a property than a LTL-
based coverage metric, and hence the proposed coverage metrics measure
the relevancy of a test suite to the semantics of a linear temporal prop-
erty. We also discuss an algorithm for refining a Büchi-automaton-based
requirement based on its strong state coverage metric. Our experiment
demonstrates the feasibility and performance of our coverage criteria and
test generation algorithms.

1 Introduction

Testing and formal verification are considered as two important and yet com-
plemental methods in verifying and validating reactive systems. Reactive sys-
tems refer to those dynamic systems that continuously operate and interact with
their environment. Examples of reactive systems include engine control modules
(ECMs) in automobiles, and autopilot modules in airplanes. Ensuring the correct
functioning of reactive systems is of uttermost interest to automobile, aerospace,
and many other industries where reactive systems are widely deployed in safe-

and/or mission-critical applications. Whereas testing is to check the behavior of
a system under a controlled environment, formal verification is to algorithmi-
cally analyze a system. A critic of testing may be best summarized by Dijkstra’s
notable statement “testing shows the presence, not the absence of bugs”. Nev-
ertheless, despite this shortcoming, testing can work where formal verification
stops short. Compared with formal verification, testing usually has a better scal-
ability, and it can be applied to implementation directly, for instance, in a setting
such as hardware-in-loop testing. In the foreseeable future testing will continue
to play a predominant role on validating and verifying reactive systems.

A direction of our research is to study how to harness the synergy of test-
ing and formal verification. For instance, formal verification techniques such as
model checking (cf. [3]) have enjoyed a great deal of successes in past two decades.
As the result, rigorous formalisms such as temporal logics and Büchi automata
are increasingly popular for specifying requirements for high-dependable reactive
systems. A research question is how testing can benefit from the proliferation
of these high-quality formal specifications. One of important formal verification
techniques is linear temporal model checking (cf. [15]), in which a system design
is checked against a linear temporal property. Büchi automata have been used
for specifying linear temporal properties. Since other formalisms such as Linear
Temporal Logic (LTL) can be translated into Büchi automata, Büchi automata
are also used as a unified theoretical platform for reasoning about linear tem-
poral model checking algorithms. For instance, efficient linear temporal model
checking algorithms such as those in [5, 6] have been proposed with the use of
Büchi automata.

The purpose of this research is to develop a framework for specification-based
testing with Büchi automata. We will address the following issues:

1. We need to define the relevancy of a test case to a specification in a Büchi
automata. For this purpose, we propose two variants of state coverage metrics
that measure how a Büchi automaton is covered during a test. A weak variant
indicates that a particular state may be reached during a test, whereas a
strong variant requires that the state must be reached during a test;

2. We need to develop a practical way to produce test cases for the testing
criteria inferred by the proposed metrics. For this purpose, we propose the
algorithms that can use the counterexample mechanism of an off-the-shelf
model checker to generate test cases for state coverage criteria.

In addition, we consider property refinement based on the proposed metrics.
Lack of state coverage may be caused by incorrect/incomplete implementation,
and/or imprecise/loose specification. Whereas testing helps identify the first
problem, a careful examination and refinement of the specification will address
the latter issue. We will discuss how to enhance our test generation algorithms
to systematically refine a property expressed as a Büchi automaton.

The rest of the paper is organized as follows: Section 2 prepares the notations
that will be used in the rest of the paper; Section 3 proposes two variants of
state coverage metrics for Büchi automata; Section 4 gives the algorithms for
generating tests for state coverage using a model checker; Section 5 discusses

the property refinement based on state coverage metrics; Section 6 discusses the
experimental results; and finally Section 7 concludes the paper.

Related Works Test generation using model checkers attracted much research
efforts in recent years as a way to harness the synergy of testing and model check-
ing. The first and foremost question in model-checking-based test generation is
how to formulate test generation as a model checking problem, more specifically,
how to encode a testing criterion as a temporal property accepted by a model
checker. It has been shown that traditional structural coverage criteria such as
Modified Condition/Decision Coverage (MCDC) can be encoded in Computa-
tional Tree Logic (CTL) (cf. [4]), which can be used by a model checker such as
NuSMV for generating tests. In [2] Calvagna et al encoded several combinatorial
testing criteria in Linear Temporal Logic (LTL), which was then used by the
model checker SAL to generate tests. In [8] Hong et al expressed dataflow crite-
ria in CTL. These previous works emphasize on applying model-checking-based
test generation to existing testing criteria. In contrast, in [13] we considered
specification-based with temporal logic requirements. We proposed a coverage
metric that measures how well a linear temporal logic requirement was covered
during a test. Our coverage metric in [13] is inspired by the notion of (non-)
vacuity in [10]. Intuitively the vacuity-based coverage criterion requires that a
test suite tests the relevancy of each subformula of a LTL property to a system.
For a comparison of these techniques, interested readers may refer to [4].

This work can be seen as an extension of our previous work in [13]. Whereas
our vacuity-based coverage metric helps define and develop test cases relevant
to temporal specifications in LTL, a feature but also a critic of the coverage
metric is that it heavily depends on syntactical structures of LTL formulae.
For example, the LTL formula f0 : G(brake ⇒ F stop) ∧ (brake ⇒ F stop)
is semantically equivalent to f1 : G(brake ⇒ F stop). Yet for vacuity-based
coverage metric, the coverage of a test case for f0 always subsumes its coverage
for f1. Defining coverage metrics based on Büchi automata will help alleviate
this syntactical dependency. Moreover, there are several existing algorithms for
minimizing Büchi automata, which can be used as a preprocess to further reduce
syntactical variance of otherwise semantically equivalent Büchi automata. In
addition, in this paper we will also discuss property refinement based on the
proposed coverage metrics.

2 Preliminaries

2.1 Kripke Structures, Traces, and Tests

We model systems as Kripke structures. A Kripke structure is a finite transi-
tion system in which each state is labeled with a set of atomic propositions.
Semantically atomic propositions represent primitive properties held at a state.
Definition 1 formally defines Kripke structures.

Definition 1 (Kripke Structures). Given a set of atomic proposition A, a
Kripke structure is a tuple 〈V, v0,→,V〉, where V is the set of states, v0 ∈ V is

the start state, →⊆ V ×V is the transition relation, and V : V → 2A labels each
state with a set of atomic propositions.

We write v → v′ in lieu of 〈v, v′〉 ∈→. We let a, b, · · · range over A. We denote
A¬ for the set of negated atomic propositions. Together, P = A∪A¬ defines the
set of literals. We let l1, l2, · · · and L1, L2, · · · range over P and 2P , respectively.

We use the following notations for sequences: let β = v0v1 · · · be a sequence,
we denote β[i] = vi for i-th element of β, β[i, j] for the subsequence vi · · · vj , and
β(i) = vi · · · for the i-th suffix of β. A trace τ of the Kripke structure 〈V, v0,→,V〉
is defined as a maximal sequence of states starting with v0 and respecting the
transition relation→, i.e., τ [0] = v0 and τ [i−1]→ τ [i] for every i < |τ |. We also
extend the labeling function V to traces: V(τ) = V(τ [0])V(τ [1]) · · ·.

Definition 2 (Lasso-Shaped Sequences). A sequence τ is lasso-shaped if it
has the form α(β)ω, where α and β are finite sequences. |β| is the repetition
factor of τ . The length of τ is a tuple 〈|α|, |β|〉.

Definition 3 (Test and Test Suite). A test is a word on 2A, where A is a
set of atomic propositions. A test suite ts is a finite set of test cases. A Kripke
structure K = 〈V, v0,→,V〉 passes a test case t if K has a trace τ such that
V(τ) = t. K passes a test suite ts if and only if it passes every test in ts.

2.2 Generalized Büchi Automata

Definition 4. A generalized Büchi automaton is a tuple 〈S, S0, ∆,F〉, in which
S is a set of states, S0 ⊆ S is the set of start states, ∆ ⊆ S × S is a set of
transitions, and the acceptance condition F ⊆ 2S is a set of sets of states.

We write s → s′ in lieu of 〈s, s′〉 ∈ ∆. A generalized Büchi automaton is an
ω-automaton. That is, it can accept the infinite version of regular languages. A
run of a generalized Büchi automaton B = 〈S, S0, ∆,F〉 is an infinite sequence
ρ = s0s1 · · · such that s0 ∈ S0 and si → si+1 for every i ≥ 0. We denote inf(ρ)
for a set of states appearing for infinite times on ρ. A successful run of B is a
run of B such that for every F ∈ F , inf(ρ) ∩ F 6= ∅.

The plain version of generalized Büchi automata in Definition 4 defines suc-
cessful runs as sequences of states. In order to accept infinite words, we need
to extend a generalized Büchi automaton with an alphabet. The alphabet is a
set of sets of atomic propositions. It shall be noted that there are more than
one way to extend a generalized Büchi automaton with an alphabet. One may
label states with a set of sets of atomic propositions, as in [5], or label tran-
sitions with a set of sets of atomic propositions, as in [6]. Just like Moore and
Mealy versions of finite systems, these two representations are equivalent. In this
paper we will use state labeling approach in [5] with one modification: instead
of labeling a state with a set of sets of atomic propositions in [5], we label the
state with a set of literals. A set of literals is a succinct representation of a set
of sets of atomic propositions: let L be a set of literals labeling state s, then
semantically s is labeled with a set of sets of atomic propositions Λ(L), where

Λ(L) = {A ⊆ A | (A ⊇ (L ∩ A)) ∧ (A ∩ (L ∩ A¬) = ∅)}, that is, every set
of atomic propositions in Λ(L) must contain all the atomic propositions in L
but none of its negated atomic propositions. In the rest of the paper, gener-
alized Büchi automata (GBA) refer to labeled generalized Büchi automata in
Definition 5.

Definition 5. A labeled generalized Büchi automaton is a tuple 〈P, S, S0, ∆,L,F〉,
in which 〈S, S0, ∆,F〉 is a generalized Büchi automaton, P is a set of literals,
and the label function L : S → 2P maps each state to a set of literals.

A GBA B = 〈A∪A¬, S, S0, ∆,L,F〉 accepts infinite words over the alphabet
2A. Let α be a word on 2A, B has a run ρ induced by α, written as α ` ρ, if and
only if for every i < |α|, α[i] ∈ Λ(L(ρ[i])). B accepts α, written as α |= B if and
only if B has a successful run ρ such that α ` ρ.

Generalized Büchi automata are of special interests to the model checking
community. Because a GBA is an ω-automaton, it can be used to describe tempo-
ral properties of a finite-state reactive system, whose executions are infinite words
of an ω-language. Formally, a GBA accepts a Kripke structure K = 〈V, v0,→,V〉
if for every trace τ of K, V(τ) |= B. Efficient Büchi automaton-based algorithms
have been developed for linear temporal model checking. The process of linear
temporal model checking generally involves translating the negation of a linear
temporal logic property φ to a GBA B¬φ, and then checking the emptiness of
the product of the GBA and the Kripke structure K. If the product automaton
is not empty, then a model checker usually outputs an accepting trace of the
product automaton, which serves as a counterexample to K |= φ.

3 State Coverage for Generalized Büchi Automata

Definition 6 (Covered States). Given a generalized Büchi automaton B =
〈P, S, S0, ∆,L,F〉, a test t weakly covers a state s if B has a successful run ρ
such that t ` ρ and s is on ρ. A test t strongly covers a state s if B accepts t
and for B’s every successful run ρ such that t ` ρ, s is on ρ.

Since a GBA B may have nondeterministic transitions, B may have more
than one successful run induced by a test. A weakly covered state s shall appear
on some successful run induced by t, whereas a strongly covered state s has
to appear on every successful run induced by t. By imposing the additional
requirement that B accepts t, Definition 6 also requires that at least one of such
successful runs exists for a state s strongly covered by t.

Definition 7 (Weak State Coverage Metrics and Adequacy Criterion).
Given a generalized Büchi automaton B = 〈P, S, S0, ∆,L,F〉, let S ⊆ S be a set
of states, the weak state coverage metric for a test suite ts on S is defined as
|S′|
|S| , where S ′ = {s | s ∈ S ∧ ∃t ∈ ts.(t weakly covers s)}. ts weakly covers S if

and only if S ′ = S.

Definition 8 (Strong State Coverage Metrics and Adequacy Crite-
rion). Given a generalized Büchi automaton B = 〈P, S, S0, ∆,L,F〉, let S ⊆ S
be a set of states, the strong state coverage metric for a test suite ts on S is

defined as |S
′|
|S| , where S ′ = {s | s ∈ S ∧ ∃t ∈ ts.(t strongly covers s)}. ts strongly

covers S if and only if S ′ = S.

Theorem 1 shows that the strong state coverage criterion subsumes the weak
path coverage criterion.

Theorem 1. Let S be a set of states of a GBA B = 〈P, S, S0, ∆,L,F〉, if a test
suite ts strongly covers S, then ts also weakly covers S.

Proof. Since ts strongly covers S, by Definition 8, for every s ∈ S, there exists
a t such that (i) B accepts t; and (ii) for every B’s successful run ρ such that
t ` ρ, s is on ρ. By (i) and (ii), B has at least one successful run ρ such that
t ` ρ and s on ρ. Therefore, by Definition 8, ts also weakly covers S. 2

4 Model-Checking-Based Test Generation

Model checking via generalized Büchi automata is a well-studied subject and
efficient algorithms have been developed over years (cf. [5]). We consider the
approach that uses a Büchi automaton-based model checker to generate test
cases for model-based testing. Model-based testing is an important component
in the workflow of model-based design. In model-based design, engineers work
on mathematical models of systems. These mathematical models are the ab-
stractions of finish products. Model-based design helps improve the quality of
finish products by supporting verification and validation at early design stage.
Model-based testing extends this benefit by supporting efficient test generations
from design models and then applying generated test suites to finish products.

The inputs to our test generation algorithms are (a model of) a transition
system and a linear temporal property in GBA. A system model is a behaviorial
abstraction of the system. In this paper we consider the path abstraction in
Definition 9. We denote Ks ≺ Km, if Km is a path abstraction of Ks. In model-
based design, a system model exists as part of design artifact so we can use it
directly as an input to our test generation algorithms.

Definition 9 (Path Abstraction). Let Km = 〈Sm, s0m,→m,Vm〉 and Ks =
〈Ss, s0s,→s,Vs〉 be two Kripke structures, Km is a path abstraction of Ks, writ-
ten as Ks ≺ Km if and only if for every trace τs of Ks, there is a trace τm of
Km such that Vs(τs) = Vm(τm).

Theorem 2. Given two Kripke structures Km and Ks such that Ks ≺ Km, if
Km passes a test suite ts, then Ks also passes ts.

Proof. Since Km passes the test suite ts, for every t ∈ ts, there is a trace τm of
Km such that Vm(τm) = t, where Vm is Km’s labeling function. By Definition

9, there exists a trace τs of Ks such that Vs(τs) = Vm(τm), therefore, Ks passes
t and hence ts. 2

By Theorem 2, a test suite generated for a design model shall also be passed
by its implementation, if the design model is a path abstraction of the imple-
mentation. In model-based testing a test suite is generated from a design model
and then applied to the actual implementation. We will generate a test suite
by utilizing the counterexample capability of a linear temporal model checker.
As we discussed before, the first and foremost question in model-checking-based
test generation is to formulate test generation as a model-checking problem. In
our case, we need to translate state coverage criteria to temporal properties ac-
cepted by a linear temporal model checker. These temporal properties are also
referred to as “trapping properties”. Since we express temporal properties as
GBAs, we will also formulate these “trapping properties” as GBAs. In our ap-
proach a model checker takes (the negation of) a trapping property in GBA
and a system model, and produces a counterexample that is essentially a trace
satisfying a given state coverage. The trapping property for generating a test
case weakly covering a state sm is given as a state marking generalized Büchi
automaton (SM-GBA) in Definition 10.

Definition 10 (State Marking Generalized Büchi Automata (SM-GBA)).
Let B = 〈P, S, S0, ∆,L,F〉 be a GBA, a state marking generalized Büchi au-
tomaton for state sm ∈ S is a GBA B(sm) = 〈P, S×{0, 1}, S0×{0}, ∆′,L′,F ′〉,
where,

– ∆′ =
(⋃
〈s,s′〉∈∆{〈(s, 0), (s′, 0)〉, 〈(s, 1), (s′, 1)〉}

)
∪
(⋃
〈sm,s′〉∈∆{〈(sm, 0), (s′, 1)〉}

)
;

– For every s ∈ S, L′((s, 0)) = L′((s, 1)) = L(s);
– F ′ =

⋃
F∈F{F × {1}}.

A SM-GBA indexes each state of the original GBA with a number from
{0, 1}. The start states are always indexed with 0. The final states are always
indexed with 1. The indexing number will be changed from 0 to 1 on the outgoing
transitions from the marked state sm. By the construction of the SM-GBA, the
only way that a run can reach an acceptance state from a start state is through
state sm. Therefore, every successful run of the SM-GBA must have sm on it.

Algorithm 1 generates a test suite that weakly covers all the states of a
given GBA. A Büchi-automaton-based linear temporal model checker like SPIN
[7] verifies the system model against a linear temporal property in two stages:
first it builds a GBA for the negation of a given property, and then it checks
the emptiness of the product of the GBA and the system model. If the system
model satisfies the linear temporal property, then the product of the GBA and
the system model shall be empty, that is, the product does not accept any
word. The emptiness checking is at the core of many Büchi-automaton-based
model checkers. Algorithm 1 uses the core emptiness checking algorithm of an
existing model checker, which is represented by the function MC isEmpty. By
our definition function MC isEmpty returns an empty word if the product of
the GBA and the system model is empty, otherwise it returns a successful run

Algorithm 1 TestGen WSC(B = 〈P, S, S0, ∆,L,F〉, Km = 〈S, s0,→,V〉)
Require: B is GBA, Km is a system model, and Km satisfies B;
Ensure: Return the test suite ts that weakly covers all the states of B and Km passes

ts. Return ∅ if such a test suite is not found;
1: for every s ∈ S do
2: Construct a SM-GBA B(s) from B that marks the state s;
3: τ = MC isEmpty(B(s),Km);
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: return ∅;
8: end if
9: end for

10: return ts;

of the product of the GBA and the system model Km. The test case obtained
from this successful run is added to the resulting test suite. Theorem 4 shows
the correctness of Algorithm 1.

Theorem 3. If the test suite ts returned by Algorithm 1 is not empty, then (i)
Km passes ts and (ii) ts weakly covers all the states of B.

Proof. (i) For each t ∈ ts, there is a related state s, and MC isEmpty(B(s),Km)
returns a successful run τ of the product of B(s) and Km such that V(τ) = t.
Since any successful run of the product of B(s) and Km shall also be a trace
of Km, τ is also a trace of Km. Therefore, Km shall pass t. Furthermore, Km

passes every test case in ts.
(ii) As shown in (i), for each t ∈ ts, there is a related state s and a successful

run τ of the product of B(s) and Km such that V(τ) = t. We will show that t
weakly covers s. By Definition 7, we need to show that there is a successful τ ′ of
B such that τ ′ goes through the state s. We obtain τ ′ by taking the projection of
τ on the states of B as follows: since τ is a run of the product of B(s) and Km,
each state on τ has the form of 〈〈s′, i〉, v〉, where s′ is a state of B, i is an index
number from {0, 1}, and v is a state of Km. We project state 〈〈s′, i〉, v〉 to state
s′ on B, and let τ ′ be the resulting sequence. Clearly τ ′ is also a successful run of
B because, by Definition 10, each transition in B(s) is mapped to a transition in
B and each acceptance state in B(s) is mapped to an acceptance state in B. In
addition, τ has to go through 〈s, 0〉 because, by Definition 10, acceptance states
of a SM-GBA are indexed by 1, whereas start states are indexed by 0. The only
way the index number is changed from 0 to 1 is to go through 〈s, 0〉. Therefore,
τ ′ has to go through s, and we have proved (ii). 2

By Definition 8, a test case t strongly covers a state s of a GBA only if every
successful run of the automaton accepting t has to visit state s. To generate such
a test case, we will define an automaton whose successful runs are precisely those
of the original automaton visiting state s. Such an automaton can be defined

Algorithm 2 TestGen SSC(B, Km = 〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km satisfies B;
Ensure: Return the test suite ts that strongly covers all the states of B and is passed

by Km. Return ∅ if such a test suite is not found;
1: for every s ∈ S do
2: Construct a SE-GBA Bs̄ for B’s state s
3: τ = MC isEmpty(¬Bs̄,Km);
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: return ∅;
8: end if
9: end for

10: return ts;

as the negation of the state excluding generalized Büchi automaton (SE-GBA)
in Definition 11. SE-GBA for state s removes s from the original automaton.
Transitions, start states, and acceptance states are updated accordingly to reflect
the removal of s. By the construction of the SE-GBA, its successful runs are
exactly the subset of the original GBA’s successful runs that do not visit s.
Therefore, the test cases accepted by the SE-GBA do not strongly cover state s
of the original GBA. Algorithm 2 uses the negation of the SE-GBA as an input
to the core emptiness checking routine of a model checker to produce a test case
with strong state coverage. Theorem 4 shows the correctness of Algorithm 2.

Definition 11 (State Excluding Generalized Büchi Automata (SM-GBA)).
Let B = 〈P, S, S0, ∆,L,F〉 be a GBA, a state excluding generalized Büchi au-
tomaton for s ∈ S is a GBA Bs̄ = 〈P, S − {s}, S0 − {s}, ∆− {〈s′, s′′〉 ∈ ∆ | s′ =
s ∨ s′′ = s},L,

⋃
F∈F{F − {s}}〉.

Theorem 4. If the test suite ts returned by Algorithm 2 is not empty, then (i)
Km passes ts; and (ii) ts strongly covers all the states of B.

Proof. (i) For each t ∈ ts, there is a related state s, andMC isEmpty(¬(Bs̄),Km)
returns a successful run τ of the product of ¬Bs̄ and Km such that V(τ) = t.
Since any successful run of the product of ¬Bs̄ and Km shall also be a trace of
Km, τ is also a trace of Km. Therefore, Km shall pass t. That is, Km passes
every test case in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related state s and a successful
run τ of the product of ¬Bs̄ and Km such that V(τ) = t. We will show that t
strongly covers s.

First, since τ is a trace of Km and Km satisfies B by the precondition of
Algorithm 2, B accepts t = V(τ).

Next, we will prove by contradiction that every successful run of B induced
by the test case t shall visit s at least once: suppose not, and let ρ be a successful

run of B induced by t and ρ does not visit s. It follows that ρ shall also be a
successful run of Bs̄, because, with the exception of missing state s, Bs̄ is the
same as B. Therefore, Bs̄ shall accept t. By Algorithm 2, there is a τ such that
t = V(τ) and τ is a successful run of the product of ¬Bs̄ and Km. It follows that
t = V(τ) is accepted by ¬Bs̄ and hence it cannot be accepted by Bs̄. We reach
a contradiction. Therefore, every successful run of B that accepts t shall visit s
at least once. 2

A generalized Büchi automaton B can be translated to a Büchi automaton by
indexing acceptance states. The resulting Büchi automaton has the size O(|F| ·
|B|), where |F| is the number of acceptance state sets in B, and |B| is the size
of B. The emptiness checking for a Büchi automaton can be done in linear time
(cf. [15]). Therefore, generating a test case weakly covering a state s can be
done in O(|K| · |F| · |B|), where |K| is the size of the model, and generating a
test suite weakly covering all the states in B can be done in O(|K| · |F| · |B|2).
Algorithm 2 starts with the construction of a SE-GBA for a state, which can be
done in linear time, and Algorithm 2 then negates SE-GBA. Michel [12] provided
a lower bound of 2O(nlogn) for negating a Büchi automaton of size n. Therefore,
Algorithm 2 takes at least O(|K| · 2O(|F|·|B|log(|F|·|B|)) to generate a test case
strongly covering a state and at least O(|K| · 2O(|F|·|B|log(|F|·|B|)) to generate a
test suite strongly covering all the states of a GBA. The reason why generating
test cases for strong state coverage is much more expensive than for weak state
coverage can be traced back to Definition 6: to strongly cover a state s we need
to examine all the successful runs and make sure that they visit s, whereas to
weakly cover s we only need to find a single successful run visiting s.

5 Testing-Based Property Refinement

In specification-based testing, the correctness of a system is defined as the sys-
tem’s conformance to its specifications. Inadequate coverage on specification may
suggest a problem in a system, but it may also indicate a problem in specification.
For example, the specification may be imprecise and/or too general. Besides pro-
ducing test suites, model-checking-based test generation algorithms also provide
valuable information on how a property is related to a system model. Here we
consider property refinement using feedbacks from test generation algorithms.

To facilitate our discussion, we need to formalize the notion of “refinement”.
Language inclusion is a natural candidate for defining a refinement preorder.
Formally we define B v B′ if and only if L(B) ⊆ L(B′), that is, B is a refinement
of B′ if the language accepted by B is a subset of the language accepted by B′.
By Definition 3, we can infer that a test accepted by B will also be accepted
by B′. We use state coverage metrics to guide the property refinement process.
The purpose of the refinement is to fine-tune a property so it can more closely
describe the behaviors of a system, measured by increased state coverage on the
property.

Lemma 1. Given a GBA B = 〈P, S, S0, ∆,L,F〉 with a state s ∈ S, let Bs̄ =
〈P, S − {s}, S0 − {s}, ∆′,L,F ′〉 be the state excluding GBA for s, then Bs̄ v B.

Proof. By Definition 11 the SE-GBA Bs̄ misses state s. It follows that the suc-
cessful runs of Bs̄ are those that do not visit s in the original GBA. Therefore,
L(Bs̄) ⊆ L(B) and hence Bs̄ v B. 2

Theorem 5. Given a GBA B = 〈P, S, S0, ∆,L,F〉 with a state s ∈ S and a
Kripke structure K = 〈V, v0,→,V〉, let Bs̄ = 〈P, S −{s}, S0 −{s}, ∆′,L′,F ′〉 be
the state excluding GBA for s, if K passes a test case t strongly covering s and
K |= B, then, K 6|= Bs̄.

Proof. We will prove by contradiction. Suppose that K |= Bs̄. Since K passes t,
K has a trace τ such that V(τ) = t. Since K |= Bs̄, t |= Bs̄. Let ρ be a successful
runs of Bs̄ induced by t, that is, t ` ρ. ρ is also a successful run of B because by
Lemma 1 Bs̄ is a refinement of B. Since ρ does not visit s, t does not strongly
covers s, which contradicts to the condition of the theorem. Therefore, K 6|= Bs̄.
2

Definition 12 (Vacuous States). Given a generalized Büchi automaton B =
〈P, S, S0, ∆,L,F〉 and a Kripke structure K, a state s of B is vacuous with
respect to K if and only if K |= B implies K |= Bs̄, where Bs̄ = 〈P, S −
{s}, S0 − {s}, ∆′,L,F ′〉 is the SE-GBA for s.

Definition 12 defines vacuous states. Since Bs̄ is a refinement of B, K 6|= B
implies K 6|= Bs̄. Therefore, Definition 12 indicates that a vacuous state s of a
GBA B for a Kripke structure K does not affect whether K satisfies B. That is,
if we remove the vacuous state s from B, the outcome of whether the system K
satisfies GBA B will stay same. This observation prompts us to introduce the
notion of state-coverage-induced refinement: for a given system and a property in
a GBA, if a state of the GBA is vacuous to the system, the state can be removed
from the GBA, and the system still satisfies this refinement of the original GBA.

Corollary 1. Given a generalized Büchi automaton B and a Kripke structure
K = 〈V, v0,→,V〉, s is not vacuous with respect to K if and only if K |= B and
there exists a test t such that t strongly covers s and K passes t.

Proof. Note that K 6|= B implies K 6|= Bs̄ since L(Bs̄) ⊆ L(B). By Definition
12, s is not vacuous with respect to K if and only if K |= B and K 6|= Bs̄. All
we need to show that: if K |= B, then K 6|= Bs̄ if and only if there exists a test
t strongly covering s and K passes t.

(⇒) Since K |= B and K 6|= Bs̄, there must be a trace τ of K such that (1)
B has a successful run ρ such that V(τ) ` ρ, and (2) Bs̄ does not have a
successful run ρ′ such that V(τ) ` ρ′. Since Bs̄ is obtained by removing state
s from B, it follows that B’s every successful run ρ′′ such that V(τ) ` ρ′′ shall
go through s, otherwise, ρ′′ is also a successful run of Bs̄, which contradicts
to the condition of our selection of τ . Let t = V(τ), by Definition 6, t strongly
covers s and K passes t.

Algorithm 3 State Refinement(B,Km = 〈S, s0,→,V〉)
.

Require: B is a GBA, Km is a system model, and Km satisfies B;
Ensure: Return a GBA as a refinement of B, and a test suite ts that strongly covers

all the states of the new GBA;
1: for every s ∈ S do
2: Construct the SE-GBA Bs̄ for B’s state s;
3: τ = MC isEmpty(¬Bs̄,Km));
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: B = Bs̄;
8: end if
9: end for

10: return 〈B, ts〉;

(⇐) Since K passes t, K has a trace τ such that V(τ) = t. Since t strongly
covers s, we have (i) t |= B, and hence B has a successful run ρ such that
t ` ρ; and (ii) for every successful run ρ′ of B such that t ` ρ′, ρ′ goes through
s. We will prove by contradiction that K 6|= Bs̄. Suppose that K |= Bs̄. It
follows that every trace of K shall be accepted by Bs̄, and hence Bs̄ has a
successful run ρ′′ such that V(τ) ` ρ′′. Note that Bs̄ is obtained by removing
s from B, ρ′′ is also a successful run of B but ρ′′ does not visit s. It follows
that t cannot strongly cover s because B has a successful run induced by t
that does not visit s. We reach a contradiction. Therefore, K 6|= Bs̄.

2

Corollary 1 shows the relation between the strong state coverage and non-
vacuousness of a state in a GBA. It shall be noted that testing alone cannot prove
the non-vacuousness of a state of a GBA. This is because the non-vacuousness
of a state s of B for a system K requires that s affects the outcome of whether
K satisfies B, that is, either K |= B and K 6|= Bs̄, or K 6|= B and K |= Bs̄.
Since Bs̄ is obtained by removing s from B, K 6|= B implies K 6|= Bs̄. The only
option left is that K |= B and K 6|= Bs̄, but testing alone cannot show that K
satisfies B. Nevertheless, lack of the strong coverage for a state s indicates that
s is a vacuous state for K. If that happens, we can remove s from B without
affecting the outcome of whether K satisfies B.

Algorithm 3 refines a GBA while generating a test suite strongly covering
states of the new GBA. Algorithm 3 is a modification of Algorithm 2. The
difference is at line 7. Instead of returning with a failed attempt in Algorithm
2 when strong state coverage cannot be obtained, Algorithm 2 refines the input
GBA by removing vacuous states. The output will be a GBA refined by removing
vacuous states with respect to the model, and a test suite for the refined GBA.

6 Experiment

To assess the feasibility and performance of our proposed coverage metrics and
test generation algorithms, we test them on three examples using SPIN. The
first example is the General Inter-ORB Protocol, a key component of Common
Object Request Broker Architecture (CORBA) specification defined by Object
Management Group (OMG). GIOP defines the inter-operability between Object
Request Brokers (ORBs). The Promela model and the properties are provided by
Kamel and Leue [9]. The second application is to generate tests for the Needham-
Schroeder Public Key Protocol. The model and the properties are provided by
Maggi and Sisto [11]. The last one is the Go-Back-N sliding window protocol as
described by Tanenbaum [1]. The model and the properties come from the SPIN
website 1. In all three cases, the properties are initially provided in LTL.

We use GOAL [14] to generate a Büchi automaton from a LTL property, and
we also use it to synthesize state marking and state excluding automata required
for generating tests for weak and strong state coverage criteria. It shall be noted
that SPIN takes an automaton in its negation form through its never claim form.
For example, the GBA for a LTL property f in its never claim form is ¬B(¬f),
where B(¬f) is the GBA for the LTL property ¬f . SPIN produces an error
trace if it finds a violation of the property in never claim form. Using SPIN, we
replace line 3 with spin(¬B(f)(s),Km), where B(f) is a Büchi automaton for
the LTL property f and B(f)(s) is its corresponding SM-GBA for state s. To
generate test cases for strong state coverage, we replace line 3 in Algorithm 2
with spin(¬(¬B(f)s̄),Km). Note that the property is given as its negation in
never claim form never{¬B(f)s̄}. As we discussed in Section 4, negating a Büchi
automaton is an expensive computation for test generation not just in its own
right but also because the complemented automaton suffers an exponential blow-
up [12]. Since SPIN produces an infinite error trace as a lasso-shaped sequence,
we measure its length in a form defined in Definition 2. As a comparison, we
also measure the coverage of generated test cases using a traditional structural
coverage metric, which in our experiment, is branch coverage. We use SPIN
version 6.0.1. All the experiments are run on a Dell server with one 2.33 GHz
quadcore Xeon 5410 and 8 GB RAM. Table 1 shows the experiment results.

For each model, column 1 of Table 1 specifies the properties that we generate
test cases for. We refer to these properties by their names originally used by their
respective authors. For each property, column 2 specifies which state coverage
metric, weak or strong, is used. Column 3 specifies which state a test case is to
cover. Column 4 provides the length of each lasso-shaped test case, as defined in
Definition 2 and column 5 is the time used to generate a test case. To compare
the performance of the proposed metrics and a traditional coverage metric, we
measure the branch coverage of each individual test case, which is given as the
ratio of covered branches v.s. total branches. We also measure the accumulative

1 http://spinroot.com/spin/man/exercises.html

Property Coverage State
Test case length

time (sec.)
Branch coverage

|α| |β| Individual Overall

General Inter-ORB Protocol

v6b

Weak
s1 577 1 0.01 46/70

51/70s2∗ 577 1 0.01 46/70
s3∗ 449 1 0.57 47/70

Strong
s1 577 1 0.01 46/70

51/70s2∗ 577 1 1.00 46/70
s3∗ 449 1 1.00 47/70

v7

Weak
s2 577 1 0.01 46/70

54/70s2∗ 577 1 0.01 46/70
s3∗ 521 1 2.04 53/70

Strong
s1 577 1 0.01 46/70

46/70s2∗ 577 1 0.01 46/70
s3∗ (Exec. Time > 300 min.)

Needham-Schroeder Security Protocol

m x1init fixed

Weak
s1 22 1 0.01 15/59

15/59s2∗ 22 1 0.01 15/59
s3∗ 22 1 0.01 15/59

Strong
s1 24 1 0.01 17/59

28/59s2∗ 24 1 0.01 17/59
s3∗ 23 1 0.01 15/59

Sliding Window Protocol

ltl3

Weak
s1 (Not covered)

14/23
s2 550 111 0.01 14/23
s3∗ 185 111 0.01 7/23
s4∗ (Not covered)

Strong

s1 (Not covered)

14/23
s2 550 111 0.01 14/23
s3∗ 185 111 0.01 7/23
s4∗ (Not covered)

Table 1. Experiment results. A test case t = α · βω, where α is the prefix and β
is a circular sequence. s0 is the default and only start state for all the properties.
Acceptance states are marked with ∗.

coverage of each test suite, which consists of all the test cases generated for a
property and a particular (weak or strong) state coverage metric.

With only exception of property v7 in GIOP model, the branch coverage
achieved by a test suite for strong state coverage criterion is better than that
for weak state coverage criterion. That is because strong state coverage criterion
subsumes weak state coverage criterion. Generating a test case strongly covering
state s3 for property v7 does not terminate in a reasonable time frame. Test
suites generated for v6b and v7 achieve a reasonable branch coverage (72.8%
for v6b and 77.1% for v7), especially when taking into account that these two
properties capture only a very limit requirement for the GIOP protocol. The
model for Needham-Schroeder security protocol involves three parties: an ini-
tiator, a responder, and an intruder. The property m 1init fixed is a liveness
property requiring that the initiator sends a message only after the responder is
up and running. It does not describes the security aspect of the protocol, that is,
safety properties involving the intruder. Almost all of branches not covered by
generated test suites are within the logic of the intruder. Lack of coverage in this
case is related to the deficiency in the specification. In the model for the sliding
window protocol, the branch points not covered by test suites for state coverage
are within the logic of timeout mechanism. The timeout mechanism is put into
place to handle packet loss. A close look at the model reveals that it does not
contain a lossy channel. So in this case lack of coverage indicates the deficiency
in the model. In these experiments, our proposed state coverage metrics do help
reveal deficiency in specifications and/or models.

7 Conclusions

We considered specification-based testing for linear temporal properties expressed
in generalized Büchi automata (GBAs). We proposed two variants of state cov-
erage metrics for measuring how well test cases cover states of a GBA. The
immediate application of these two metrics is to select test cases based on their
relevancy to a GBA-based specification. For this application we provide model-
checking-based test generation algorithms for proposed coverage criteria. This
research extends our previous work on vacuity-based coverage metric for LTL
formula. By using GBA as the underlying representation for linear temporal
properties, we can use existing automaton minimization techniques to reduce
syntactical variances of these temporal properties, and hence our state coverage
metrics defined on GBAs are less susceptible to syntactical changes of properties.
We argued that our property-based state coverage metrics also helped detect the
deficiency in specification and one may use them to guide the refinement of re-
quirement specifications. For this application, we defined the notion of vacuous
states for a GBA and a system. Vacuous states are those states of the GBA that
do not affect whether the system satisfies the GBA. Removing these vacuous
states from the GBA yields a refined GBA that describes the behaviors of the
system more closely. We provided a model-checking-based property refinement
algorithm based on the notion of vacuous states and strong state coverage met-

ric. Our experiment results demonstrated the feasibility and performance of our
coverage metrics and test generation algorithms.

For the further research on the subject, we will study other GBA-based
coverage metrics, and we will also consider a general framework for unifying
temporal logic-based and GBA-based coverage metrics.

Acknowledgement The author would like to thank Bolong Zeng for his assis-
tance in the experimental study.

References

1. Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 5th edition, 2010.
2. Andrea Calvagna and Angelo Gargantini. A Logic-Based Approach to Combina-

torial Testing with Constraints. In TAP’08, volume 4966 of LNCS, pages 66–83.
Springer, 2008.

3. Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
1999.

4. Gordon Fraser and Angelo Gargantini. An Evaluation of Specification Based Test
Generation Techniques Using Model Checkers. In TAIC-PART’09, pages 72–81.
IEEE Press, 2009.

5. Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In PSTV’95, pages 3–18. Chapman
and Hall, 1995.

6. Dimitra Giannakopoulou and Flavio Lerda. From States to Transitions: Improving
Translation of LTL Formulae to Büchi Automata. In FORTE’02, volume 2529 of
LNCS, pages 308–326. Springer, 2002.

7. Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

8. Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A temporal logic
based theory of test coverage and generation. In TACAS’02, volume 2280 of LNCS,
pages 327–341, 2002.

9. Moataz Kamel and Stefan Leue. Formalization and validation of the General
Inter-ORB Protocol (GIOP) using PROMELA and SPIN. International Journal
on Software Tools for Technology Transfer (STTT), 2(4):394–409, March 2000.

10. Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal model check-
ing. International Journal on Software Tools for Technology Transfer (STTT),
4(2):224–233, February 2003.

11. Paolo Maggi and Riccardo Sisto. Using SPIN to Verify Security Properties of Cryp-
tographic Protocols. In SPIN’02, volume 2318 of LNCS, pages 187–204. Springer,
2002.

12. M. Michel. Complementation is more difficult with automata on infinite words.
CNET, Paris, France, 1988.

13. Li Tan, Oleg Sokolsky, and Insup Lee. Specification-based Testing with Linear
Temporal Logic. In IRI’04, pages 493–498. IEEE society, 2004.

14. Yih-kuen Tsay, Yu-fang Chen, Ming-hsien Tsai, Kang-nien Wu, and Wen-chin
Chan. GOAL : A Graphical Tool for Manipulating Büchi Automata and Temporal
Formulae. In TACAS’07, volume 4424 of LNCS, pages 466–471. Springer, 2007.

15. Moshe Vardi. Automata-theoretic model checking revisited. In VMCAI’07, volume
4349 of LNCS, pages 137–150. Springer, 2007.

