
Noname manuscript No.
(will be inserted by the editor)

An Unified Framework for Evaluating Test Criteria in
Model-Checking-Assisted Test Case Generation

Bolong Zeng · Li Tan

Received: date / Accepted: date

Abstract Testing is often cited as one of the most costly operations in testing de-
pendable systems [11]. A particular challenging task in testing is test-case genera-
tion. To improve the efficiency of test-case generation and reduce its cost, recently
automated formal verification techniques such as model checking are extended to
automate test-case generation processes. In model-checking-assisted test-case gener-
ation, a test criterion is formulated as temporal logical formulae, which are used by
a model checker to generate test cases satisfying the test criterion. Traditional test
criteria such as branch coverage criterion and newer temporal-logic-inspired crite-
ria such as property coverage criteria [32] are used with model-checking-assisted test
generation. Two key questions in model-checking-assisted test generation are how ef-
ficiently a model checker may generate test suites for these criteria and how effective
these test suites are. To answer these questions, we developed a unified framework for
evaluating (1) the effectiveness of the test criteria used with model-checking-assisted
test-case generation and (2) the efficiency of test-case generation for these criteria.
The benefits of this work are three-fold: first, the computational study carried out in
this work provides some measurements of the effectiveness and efficiency of various
test criteria used with model-checking-assisted test case generation. These perfor-
mance measurements are important factors to consider when a practitioner selects
appropriate test criteria for an application of model-checking-assisted test genera-
tion. Second, we propose a unified test generation framework based on generalized
Büchi automata. The framework uses the same model checker, in this case, SPIN
model checker [13], to generate test cases for different criteria and compare them on

Bolong Zeng
School of Electrical Engineering and Computer Science, Washington State University, Richland, WA
99352
E-mail: bzeng@wsu.edu

Li Tan
School of Electrical Engineering and Computer Science, Washington State University, Richland, WA
99352
E-mail: litan@tricity.wsu.edu

2 Bolong Zeng, Li Tan

a consistent basis. Last but not least, we describe in great details the methodology and
automated test generation environment that we developed on the basis of our unified
framework. Such details would be of interest to researchers and practitioners who
want to use and extend this unified framework and its accompanying tools.

1 Introduction

Nowadays model checking [5] become an important player in the field of verification
and validation (V&V) technologies. It has been widely used in a variety of applica-
tions such as verifying control modules in airplanes [27] and in deep-space vehicles
[21]. Model checking provides a rigid and mathematically sound proof for the cor-
rectness of a variety of systems, many of which are used in safety-critical applica-
tions. On the other hand, testing remains an important force in the V&V field and
its value is acknowledged by contemporary industrial processes and standards. For
example, DO-178B [28], the standard for avionics software, is known for its rigor-
ous requirements for testing criteria, such as the Modified Condition and Decision
Coverage (MC/DC).

Model-checking-assisted test-case generation is devised as a strategy for harness-
ing the synergy of two major verification and validation (V&V) technologies: testing
and model checking [1]. To improve the performance of model-checking techniques,
over past three decades the model checking community has developed efficient algo-
rithms to explore the state space of a system and reason its temporal behavior. The
basic idea behind model-checking-assisted test-case generation is to utilize efficient
model-checking algorithms to search for execution paths under a test criterion. These
execution paths are then used to synthesize a test suite satisfying the test criterion. A
benefit of model-checking-assisted test-case generation is that a model checker may
automate the process of test-case generation with better efficiency and at a reduced
cost. Additionally an efficient model-checking algorithm can help uncover a test case
that otherwise may not be easily constructed manually.

In practice model-checking-assisted test generation makes use of counterexample
generation capability provided by many contemporary model checkers [3]. The ob-
jectives of a test criterion are encoded as temporal logic properties, often called “trap
properties” [9]. Various strategies are proposed to translate existing test criteria to
trap properties in various temporal logics[10,16,26]. In [32], we proposed a syntax-
based approach that extracted trap properties from a specification in Linear Temporal
Logic. Our approach was based on the notion of “vacuity” [19]. In [29], we pro-
posed a semantic approach to synthesize trap properties from temporal specification
in Büchi automaton.

A question for model-checking-assisted test generation is its practical perfor-
mance. This question can be further refined to two research questions: (i) how ef-
fective are test cases generated from different test criteria, and (ii) how efficiently a
model checker can generate a test suite for a test criterion. Besides theoretical in-
terests, studies on these questions are of practical importance: they would provide
heuristic to practitioners on how to select test criteria to achieve desired test effec-
tiveness, given time and resource constraints.

An Unified Framework for Evaluating Test Criteria 3

The main motivation behind our work is to develop a unified framework for eval-
uating and comparing the performance of various test criteria in context of model-
checking-assisted test case generation. Our proposed framework addresses the afore-
mentioned two questions. Specifically, the framework enables us to measure the ef-
ficiency of a model checker generating test cases for a given test criterion, and to
assess the effectiveness of a given test criterion by measuring cross-coverage per-
centage with respect to other test criteria. The unified test framework also allows us
to compare on a consistent basis test criteria used with model-checking-assisted test
generation, yielding a less-biased comparison result.

Last but not least, we describe in great details the tool and techniques we de-
veloped for automating test generation process. Such details are of interests to re-
searchers who need to carry out their own experimental study on test criteria, and to
practitioners who want to integrate model-checking-assisted test-case generation into
their testing processes.

The rest of the paper is organized as follows: Section 2 reviews the notations
and prior knowledge that will be used in the rest of the paper. Section 3 describes
test criteria and the strategies used to translate the criteria to linear-temporal trap
properties. Section 4 introduces the methodology and workflow that we developed
for this computational study. Section 5 discusses the result of our computation study.
Finally Section 6 concludes this paper.

1.1 Related Works

Because of its potential benefits, model-checking-assisted test-case generation re-
ceives increasing interests in past several years in academia and industry practices.
Commercial tools such as Simulink Design Verifier [22] are available to generate
test cases for industrial designs using bounded model checking technique. In general,
model-checking-assisted test-case generation utilizes the witness/counterexample gen-
eration capability of model checkers to generate test cases. Some of the early works
on testing with model checking include [8], in which the test objectives are manually
specified in the form of never claims for the underlying model checker. The approach
has since evolved to become more systematic and provide a push-button solution for
generating test cases using model checkers. The process may be briefly summarized
as such: first, one needs to identify test objectives that define the characteristics of
expected test cases. For example, a test objective could be a requirement on the final
output of an execution, or a sequence of steps during the execution. In practice test
objectives may be derived from a test criterion, which describes the overall goal of
a test suite. A test objective is then translated to a temporal logic formula, often re-
ferred to as a “trap property”. A model checker is then deployed to examine a system
model and search for an execution path satisfying such a trap property. The execution
path is then used as the basis for constructing a test case that causes an implemen-
tation of the system to run the execution path. In practice, a trap property is often
negated to form a never-claim, and a model checker such as a SPIN [14] is used to
generate a counterexample for the never-claim, which is essentially a witness for the
trap property [10]. It shall be noted that in some other works, such as [9], the authors

4 Bolong Zeng, Li Tan

refer to the never-claims used to extract counterexamples as trap properties. To avoid
ambiguity, in this paper we refer to a trap property in its positive term, that is, a trap
property describes the property that shall hold for an expected test case.

The problem then shifts to how to synthesize these trap properties. Coverage cri-
teria are standards used in testing process to evaluate how thorough a system is tested
under a certain set of test cases (a test suite). A coverage criterion is defined with re-
spect to certain aspects of a system or a specification, such as statements and branches
in a software program. If an objective described in the criterion is executed by a test
case, we say it is covered by the test case. If every objectives of a test criterion is cov-
ered by some test cases in a test suite, the test suite achieves the full coverage for this
criterion. In our study, we compare an array of existing coverage criteria and property-
based coverage criterion in context of model-checking-assisted test-case generation.
These coverage criteria serve as the basis for synthesizing test objectives and trap
properties used by model checkers.

In our unified framework we will take into consideration different strategies that
are used to synthesize test objectives from a coverage criterion. A variety of strate-
gies [10,16,26] has been proposed to translate an existing coverage criterion to a set
of trap properties. In [1], the authors presented the idea of constructing their imple-
mentation around mutation analysis to achieve coverage towards the Software Cost
Reduction (SCR) specfications. With respect to the same standards, [10] developed
the mechanism of extracting trap properties automatically from the specifications, by
turning the operational specifications into an SPIN or SMV model, and then forming
the never-claims from the SCR requirement properties.

Traditional coverage criteria may be used with model-checking-assisted test gen-
eration. Fraser et al. [9] studied various test criteria in the context of model-checking-
assisted test-case generation. Structural coverage criteria are among the most fre-
quently used coverage criteria in testing. [12] provided the general framework for
generating test cases with respect to these criteria. Control and data flow coverage
criteria emphasize on the coverage over the data-flow graph of a system model. Hong
et al. investigated this particular topic in [15] with four data-flow coverage criteria
being taken into consideration. Tan et al. proposed in [31,32] a method to extract
trap properties from requirement properties in Linear Temporal Logic (LTL). The
main motivation behind this work is to examine the property with respect to the no-
tion of vacuity. In addition to some of the test criteria studied in [9], we also include
a semantics-oriented coverage criterion [29], which is an extension of the work done
in [31,32]. [29] presented the coverage criteria based on the Büchi automaton that
is equivalent to the temporal property. It requires that each state in the automaton
must be strongly and/or weakly covered by the test cases. This approach goes further
into tackling the semantic of the properties, and is also capable of providing useful
information over the quality of the property.

We briefly introduce a few research works that have been done over the years
that are most relevant to our study presented in this paper. Most of these aforemen-
tioned studies discuss the methodology of conducting model-checking-assisted test
case generation, while our focus is to compare these different methodologies in a uni-
fied framework, and present a way to evaluate them with respect to their effectiveness
and efficiency. Another distinctive feature of our work lays on the formalism that we

An Unified Framework for Evaluating Test Criteria 5

choose as our underlying representation of a temporal property. In model-checking-
assisted test-case generation a trap property is formulated as a temporal property.
Several formalisms representing temporal properties have been investigated for the
purpose of assisting model-checking-assisted test case generation. In [9], the authors
used Computational Tree Logic (CTL) as the underlying temporal logic to specify
trap properties. It shall be noted that a counterexample for CTL may not necessarily
be linear [4]. In this study we use Büchi automaton as the underlying formalism. For
most of the test criteria, we translate them to trap properties in Linear Temporal Logic
(LTL), and these properties are then translated to Büchi automata. Büchi-automaton-
based coverage criteria [29] are also included in this study. These criteria are already
expressed in the form of Büchi automata, thus no further translation is necessary.
Using Büchi automaton as the underlying temporal formalism has two benefits: first,
test cases used in most of applications are linear. Since a counterexample for a Büchi
automaton is linear, a test case obtains its linearity from the counterexample that it
is built up. Second, it enables us to compare existing test criteria as well as newer
Büchi-automaton-based coverage criteria [29] on the same platform and using the
same model checker, eliminating the performance bias that may be caused by using
different temporal formalisms.

2 Preliminaries

2.1 Kripke Structure, Traces, and Tests

We use Kripke Structure to model a system. A Kripke structure is a finite transition
system in which each state is labeled with a set of atomic propositions. Each atomic
proposition represents a primitive property held at a state.

Definition 1 Given the alphabet of atomic propositions A, a Kripke structure is de-
noted as a tuple 〈S, s0,→, T 〉. S represents the set of states while s0 ∈ S is the
starting state. →⊆ S × S denotes the transitions among them, and T : A → 2S

labels each state with a set of atomic propositions.

For brevity and clarity, we use s→ s′ in lieu of (s, s′) ∈→. We let atomic propo-
sitions range over a, b, . . . in the alphabet A. The set of all the atomatic propositions
and their negations forms the set of literals L.

A sequence of Kripke structure is a series of states Σ = si0si1 . . . in which for
any integer k ≥ 0, sik → sik+1

. A trace is a maximal sequence which starts with s0,
the start state.

Definition 2 A sequence Σ is lasso-shaped if it is in the form of σ1(σ2)
ω , where σ1

and σ2 are both finite sequences.

A lasso-shaped sequence can be understood as a sequence that after traveling
through a certain number of states, falls into a loop of sub-sequence which repeats
infinitely. The sequence with such feature may be reduced to a bounded finite se-
quence for testing purpose [32].

6 Bolong Zeng, Li Tan

Definition 3 A test is a sequence defined on 2L, and a finite test is a test case. A
finite set of such test cases is a test suite. Passing a test case t implies that the system
has a trace R, in which the i-th element: R[i] ∈ T (t[i]).

2.2 Generalized Büchi Automaton

A Generalized Büchi automaton (GBA) is an ω-automaton, whose acceptance lan-
guage is essentially an extended version of a regular language with infinite length.
We define an extended version of GBA with an alphabet of literals [29], along with
the usual states, transitions and acceptance condition.

Definition 4 A generalized Büchi automaton is denoted as a tuple 〈P, S, S0, ∆,Λ,F〉,
in which S is a set of states, S0 ⊆ S is the set of start states, ∆ ⊆ S × S represents
the transitions, and the F ⊆ 2S , which is a set that consists of sets of states, forms
the acceptance condition. In addition, P is a set of literals, and Λ : S → 2P is the
labeling function that maps each state to a set of literals.

Similarly, we write s → s′ in lieu of (s, s′) ∈ ∆. A run of a generalized Büchi
automatonB is an infinite sequenceR = s0s1... such that s0 ∈ S0 and si → si+1 for
every i ≥ 0. inf(R) is used to represent a set of states that appear for infinite times on
R. A successful run of B must satisfy the following condition that for every F ∈ F ,
inf(R)∩F 6= ∅. A GBA B with the complete set of literals L accepts infinite words
over alphabet 2A. Let w be a word from the alphabet, B has a run R induced by w,
denoted as w ` R, if and only if for every i < |w|, w[i] ∈ Π(Λ(R[i])), where Π is
the function mapping the literals to the atomic propositions that are associated with
the same states. B accepts w, denoted as w � B if and only if B has a successful run
R such that w ` R.

2.3 LTL Model Checking

We present the system requirements in the form of Linear Temporal Logic (LTL) [7].
A property in LTL is a path formula defined recursively as follows,

φ ::= a | ¬φ | φ ∧ φ |Xφ | φUφ

The basic semantics of a path formula are defined with respect to a Kripke structure
K = 〈S, s0,→, T 〉. IfR is a trace ofK and a ∈ A is an atomic propositon, we denote
R �K a if and only if R[0] ∈ T (a). Atomic proposition true may be satisfied by
any state, whereas no state may satisfy atomic proposition false.

The “next” operator X in Xφ means that φ has to hold starting from next state.
The “until” operator U inϕUψ requires thatϕ has to hold until eventuallyψ becomes
true. In addition, we define ∨ as a dual of ∧, and the “release” operator R as a dual
of U. For convenience, Gφ and Fφ are often used to denote falseR φ and trueU
φ respectively, bearing the meanings of φ always holds and φ will eventually hold.

A and E are path quantifiers that address formulae of LTL and its dual logic ∃LTL
in the form of Aφ and Eφ, meaning that φ holds on all paths or there exists a path on

An Unified Framework for Evaluating Test Criteria 7

which φ holds. Obviously, an LTL formula could be negated into a ∃LTL formula, and
vice versa. By definition, a single trace could be used to prove or disprove the holding
of a ∃LTL or LTL formula, such trace is called a linear witness or a counterexample
for a model-checking problem [6]. It is further shown that there always exists such
witness and counterexample that are lasso-shaped.

Definition 5 Given a trace γ on a Kripke structure K. If γ �K φ holds on K, γ is
a linear witness for the ∃LTL model-checking problem 〈Eφ,K〉 and a linear coun-
terexample for LTL model-checking problem 〈A¬φ,K〉.

3 Coverage Criteria

This section gives a brief introduction of the test criteria we covered in this work. For
each criteria, we explain how trap properties, or in the case of Büchi Automata state
coverage, “trap automata” are generated. For clarity, in this paper we also refer to trap
properties as desirable properties, i.e., test cases are generated with the purpose of
satisfying them. We use LTL as the underlying logic to describe temporal properties
as opposed to Computation Tree Logic (CTL) in [9]. Both LTL and CTL are sublogics
of the CTL∗. While they share a common subset, there are properties that can be
described only by one of them. For the purpose of clarity, we explicitly write the top-
level path quantifiers for LTL and its dual ELTL. We denote A,E to distinguish them
syntactically from the path quantifiers naturally presented in a CTL∗ formula.

3.1 Logic Expression Coverage Criteria

We investigate several logic expression coverage criteria in this study. Branch Cover-
age (BC) criterion belongs to the logic expression criteria [17], and is one of the most
commonly-used test coverage standards. The criterion focuses on the truth value of
the guard of a transition in a transition system, for example, an “if-else” construct in
a program. This criterion covers the dynamic behaviors of a system by testing both
true and false outcomes of a logic expression. It needs to access the structure of the
system and hence it is classified as a syntax-based white-box testing approach.

We orchestrate our experiments in the following manner. A Boolean flag bi is
attached to the i-th branch of a conditional construct of a system, thus checking the
value of the flag could reveal that whether a branch is covered or not. We write the
trap property as below,

EF(bi ∧Xtrue)

A witness produced for the trap property would indicate the i-th branch is covered.
Xtrue is added to ensure that the transition induced by the i-th branch is completed,
i.e., the transition reaches its destination state.

For a multiple-branch conditional construct such as “switch” statement in C/C++
or “if” block in Promela, the “default” branch is executed if all other branches fail.
To make the criterion consistent, we assume that there is always a “default” branch,
even it is undefined and/or has an empty code body.

8 Bolong Zeng, Li Tan

Several other logic expression criteria extend the branch coverage criterion to
check not only the truth value of a guard, but also the value of each clause of it and/or
a particular combination of these values. Our experiments will cover some of these
logic expression criteria as well.

Clause Coverage (CC) requires a test suite to cover both true and false outcomes
of each clause of every transition guard. We use a boolean flag cij to represent the
j-th boolean clause in the i-th branch, and similarly, the trap property is written as
below,

EF(cij ∧Xtrue)

Note that in Promela, the modeling language used by our underlying model checker
SPIN, the branch transition guard can be a non-Boolean statement, for example, an
action of sending message. In this case, cij is simply bi, since Promela does not allow
more than one clause in a non-boolean guard, and adding the clause after branch
would change the semantics of the model. Simply put, such branches are each treated
as one simple clause, and using the branch coverage trap property is sufficient. This
applies to the clause coverage criteria described below as well.

Complete Clause Coverage (CoCC) is a stronger criterion over clauses than Clause
Coverage. It requires a test suite to cover all possible combinations of truth values of
each clause. For this criterion, the trap property is written as

EF(Ci ∧Xtrue)

in which Ci is the conjuction of every clause in the i-th branch being checked with
different truth values: Ci =

∧
cij == vi, vi could be either true or false.

General Active Clause Coverage (GACC) evaluates the importance of a clause
while covering its truth values. It requires that for each clause in the branch guard,
there exists a configuration that the clause determines the truth value of the guard.
Assume Bi is the i-th branch guard and cij is the j-th clause, Bi(cij , x) means us-
ing x to substitute cij in Bi, then the following xor-expression needs to be true:
Bi(cij , true)⊕Bi(cij , false). Therefore, the trap property is

EF(cij ∧ (Bi(cij , true)⊕Bi(cij , false)) ∧Xtrue)

It is worthwhile noting that the trap properties for the clause coverage criteria
could only, and is only necessary to be applied to the boolean guards. In addition,
since the branches in Promela is multiple-branch conditional construct, the coverage
percentage of the logic expression criteria is calculated with respect to the cases when
the branch can be covered, i.e. when the guard’s truth value is true. For example, for a
guard in the form of c1||c2 and the CoCC criterion, we consider the cases of c1∧¬c2,
¬c1 ∧ c2 and c1 ∧ c2, but not ¬c1 ∧ ¬c2, since the last configuration renders the
branch unable to be covered, thus we cannot be sure how the clauses are configured.
For the same reason, a branch with only one clause is considered fully covered if it
can be evaluated to true, instead of being 50% by also considering the case of it
being false. The “default” branches are treated as branches with one clause for the
purpose of consistency.

An Unified Framework for Evaluating Test Criteria 9

3.2 Data-flow Coverage Criteria

It has been shown that Data-flow Coverage (DC) criteria may be reduced to model
checking problems [15]. One of them emphasizes on covering definition-use pairs in
a system [25]. We adopt the requirements of the all-Definitions coverage criterion in
our work, which requires to cover all the definition-clear paths in the system.

Same as branch coverage criterion, data-flow coverage criteria are also white-box
testing approaches. We apply a similar strategy as in Section 3.1 to the all-definition
coverage criterion. We denote a definition and usage of a variable v as d(v) and u(v).
We also write the disjunction of all the definitions of v as D(v). The trap property is
generated for every definition and usage of v as follows:

EF(d(v) ∧X(¬D(v)U(u(v) ∧Xtrue))

The property means that starting from the state that a definition is reached, no
other definition can occur until the usage of x eventually happens. It also guarantees
that the system is still executable after the usage. Any trace that the model checker is
able to find is a witness of a definition clear path from d(v) to u(v).

3.3 Property Coverage Criterion

Inspired by the requirement of checking an implementation against a specific prop-
erty instead of syntax-based standards, Tan et al. proposed the property-coverage
metric and criterion towards model-checking-assisted test generation [32]. The prop-
erty coverage metric measures how well an LTL property is tested by a test suite. A
mutation of a formula f is written as f [φ← ψ], in which φ is a subformula of f that
is being replaced by ψ.

Definition 6 (Property-Coverage Metric [32]) Given a test t. Consider a mutation
f [φ ← ψ], if every Kripke structure K that passes t is unable to satisfy the mutated
formula, then t covers the subformula φ in f . The property-coverage metric is a
preorder relationship�f for property f . For test suites TS1 and TS2, TS1 �f TS2

if and only if for every subformula φ of f covered by a test t ∈ TS2, there exists a
test t′ ∈ TS1 that also covers φ.

The intuition behind the property-coverage metric and criterion is that a test suite
shall test the relevancy of a system with respect to its requirement specification. One
way to test the relevancy is to check whether every sub-formula plays an indispens-
able role in defining the requirement, that is, every sub-formula needs to be covered
in test.

Definition 7 (Property-Coverage Criterion [32]) (PC) TS is a property-coverage
test suite for a systemK and an LTL property f ifK passes TS and TS covers every
subformula of f .

10 Bolong Zeng, Li Tan

Function � defines the polarity of a sub-formula. �(φ) = true for a subformula
φ in f if it is nested in odd number of negations; otherwise �(φ) = false [32]. The
trap property for a test covering the sub-formula φ may be defined as,

EF(¬f [φ← �(φ)])

For example, consider a LTL property describing a vehicle at an intersection: φv =
red → X(¬red R ¬acc), meaning that “after the light turns red, the driver will
not accelerate the vehicle until the light switches”. Using R instead of U means that
the light may or may not switch. Using the property-coverage criterion on atomic
propositions, we obtain three “trap” properties: ¬(true → X(¬red R ¬acc)) =
X(red U acc), ¬(red → X(¬true R ¬acc)) = red ∧ X(G acc), and ¬(red →
X(¬red R ¬true)) = red ∧ X(red U true) = red. For each of these proper-
ties, a test suite covering φv has a test case satisfying the property. This criterion
addresses the notion of vacuity [2,19]. Aside from the trivial pass introduced by in-
duction as presented in the previous example, there are also other types of vacuous
passes [2]. Using the mutation technique on the temporal property prevents the vacu-
ous passes in a logic formula to give trivial result, so that any justification made over
the formula has more credibility. For the details of the property-coverage criterion,
interested users may refer to [32].

3.4 Büchi Automata State Coverage Criteria

Recently Tan [29] proposed a semantics-oriented testing strategy for requirement
specification in Büchi automata. The work is an extension of [31]. Unlike the property-
based coverage criterion whose definition is based on the syntactical structure of an
LTL formula, the coverage criteria in [29] are based on Büchi automata, which cap-
ture the semantics of a linear-time requirement specification.

Definition 8 (Covered States [29]) Given a generalized Büchi automaton B =
〈P, S, S0, ∆,Λ,F〉, if there exists a successful run R goes through s that can be
induced by a test t, then t weakly covers s. If B accepts t, while every successful run
R of B such that t ` R, it goes through s, then t strongly covers s.

Trap properties are given in the form of Büchi automata, transformed from the
original Büchi automaton encoding linear-time requirements. Two test criteria are
derived with respect to strongly or weakly cover the states in the Büchi automaton
used to model the trap properties. To strongly cover a state s of the original Büchi
automaton B, one may remove the state from B. The result is a State Excluding
Generalized Büchi Automaton (SE-GBA) Bs̄. The “trap automaton” for generating
test strongly covering s is ¬Bs̄, the negation of SE-GBA.

To weakly cover a state s of B, one may construct a State Marking Generalized
Büchi Automaton (SM-GBA) B(s) as follows: first we get a replica B′ of the original
Büchi automaton B, and then we add transitions from s of B to B′’s counterparts of
the destinations of these transitions. The start states of the resulting SM-GBA B(s)
are those of B, and the acceptance conditions of B(s) is that of B′.

An Unified Framework for Evaluating Test Criteria 11

GBA state coverage criteria

Specifications given
in GBA

Graph
transformation

Trap properties in GBA

Property coverage criteria

Specifications given
in LTL formula

Atomic
proposition

replacement

Trap properties in
∃LTL formula

LTL formula

negation

GBA

negation

translation

Logic expression coverage criteria Data-flow coverage criteria

Model checker

Test
case

Linear
counterexample

System model

Fig. 1 Test generation procedure

The test criteria developed for Büchi automata incorporate these two variants of
state coverage. The quality of a test suite is measured against the percentage of states
that it is able to cover. Since a Büchi automaton is essentially a high-level model
of a temporal requirement, each state of the automaton contains a certain amount
of semantic value of the requirements that are not straightforward. Enforcing and
judging whether a test suite covers all the states extends testing to identify problems
that are not obvious to even experienced engineers. For the details of SE-GBA, SM-
GBA, and their constructions, interested readers may refer to [29]. We refer to the
criteria as Büchi Automata State Coverage Criteria (SC).

4 Experiment Methodology and Workflow

We propose a uniform framework for evaluating practical performance of testing cri-
teria proposed for model-checking-assisted test generation. The framework contains
two main components: a model-checking-assisted test generation platform capable
of handling various test criteria; and a performance-comparison tool that computes
cross-coverage between different test criteria.

Figure 1 shows the general workflow of our model-checking-assisted generation
platform. We use SPIN as the underlying model checker [13] and model a system un-
der test in Promela, the system modeling language used by the SPIN. For test criteria
whose trap properties may be expressed in ∃LTL, such as the logic expression cov-
erage criterion (Section 3.1), data-flow coverage criteria (Section 3.2), and property-
coverage criterion (Section 3.3), we first negate the trap properties to obtain LTL
formulae. These LTL formulae are then fed to SPIN, along with the Promela model
of the system under test. Internally SPIN translates a LTL formula to a Büchi automa-
ton and performs Büchi-automaton-based model checking. If the system model does
not satisify the LTL formula, SPIN produces a counterexample, which can be then
translated to a test case.

12 Bolong Zeng, Li Tan

S0

S1

S2

¬p ¬t

¬p ¬t

¬p ¬t

t

t
t

¬p

¬p ¬t¬p ¬t

S3

Fig. 2 GBA B for L1

S0

S3

S1

S2

¬p ¬t

¬p ¬t

¬p ¬t

t

t

t

¬p

¬p ¬t¬p ¬t S4

S7

S5

S6

¬p ¬t

¬p ¬t

¬p ¬t

t

t
t

¬p

¬p ¬t¬p ¬t

¬p ¬t

t

S0

S3

S2

¬p
¬t

t

¬p

¬p
¬t

t

B
s

B s()1
1

Fig. 3 SE-GBA Bs1 and SM-GBA B(s1)

For Büchi Automata state coverage, the specifications presented in GBA needs to
go through a graph transformation process using Goal [33]. We explain the process
with an example taken from our experiments. Figure 2 shows a generalized Büchi
automaton B, which is semantically equivalent to LTL property L1 : G(¬t → ((¬p
U t)∨G¬p)). It specifies a temporal requirement for GIOP, the general Inter-Object
Request Brokers (ORB) Protocol [18]. In L1, t stands for a request being sent, and
p stands for an agent receiving a reply. Semantically, L1 holds only when an agent
would never receive any reply until a request has been made. To produce test cases
that strongly covers one state, for instance s1, simply removing s1 from the automa-
ton is sufficient to get the SE-GBA Bs1 , as shown on the left side in Figure 3. Then
we take the complement automaton ¬Bs1 as the “trap automaton”. A counterexam-
ple produced by SPIN for the model-checking problem on “trap automaton” may be
translated to a test case strongly covering s1.

To generate a test case weakly covering s1, the original GBA B is transformed
to a SM-GBA B(s1) as the “trap automaton” (Figure 3). To construct B(s1), B is

An Unified Framework for Evaluating Test Criteria 13

Criteria A

Model
transformation

Trap properties in
∃LTL formula or GBA Model checker

Test
Suite A

 Test

generation

GBA

Comparison
result

Criteria B

System model

 Single trace
 model

Fig. 4 Cross comparison procedure

duplicated, then transitions from s1 to s5 and s6 are also added, corresponding to the
ones from s1 to s1 and s2 in B. Another change is that the acceptance states, marked
as double circled states, are all moved to the new automaton. Thus, any successful run
of B(s1) must go through s1. As a result, any counterexample that is found by the
model checker is equivalent to a successful run in the original automaton that goes
through s1, which satisfies the requirements of weak state coverage.

It shall be noted that the graph transformation process changes the semantics of
the original automaton. While the original GBA is equivalent to an LTL formula, after
the transformation, we essentially treat the new automaton as an equivalent to a ∃LTL
formula, since our objective is to find a linear counterexample, which can be used as
the basis for a test case.

We compare the practical performances of two criteria by measuring cross cover-
age. Figure 4 shows the workflow for measuring cross coverage between two criteria.
The basic approach is to first generate a test suite for one test criterion, and then
test the system using the generated test suite and measure the coverage against the
other criterion. We conduct the experiments in the following ways. A script written
in Java interprets the lasso-shaped counterexample produced and record each step it
has taken along the way. Then the script transforms the system model accordingly
into a new model that has only one possible execution path, which is identical to the
counterexample. The execution path is one possible execution of the system under a
test case extracted from the counterexample. By model checking a single-trace model
against the trap properties of the other criterion, we may measure the coverage of a
test case with respect to the other criterion. The cross coverage measures to what
degree a test suite generated for one criterion may achieve the other test criterion.
It serves as an indicator for a comparison of the practical effectiveness of two test
criteria.

14 Bolong Zeng, Li Tan

Table 1 Cross-coverage comparison results

GIOP
BC CC CoCC GACC SC-str SC-wk PC DC

BC (100%) 100% 100% 100% 67% 67% 75% 100%
SC-str 73% 73% 73% 73% (100%) 100% 75% 82%
SC-wk 77% 77% 77% 77% 100% (100%) 75% 82%
PC 73% 73% 73% 73% 100% 100% (75%) 78%
DC 71% 71% 71% 71% 100% 100% 75% (100%)

Sliding Window
BC CC CoCC GACC SC-str SC-wk PC DC

BC (100%) 93% 94% 81% 50% 75% 75% 61%
CC 100% (100%) 94% 81% 50% 75% 50% 51%
CoCC 100% 100% (100%) 88% 50% 75% 75% 61%
GACC 100% 100% 98% (92%) 50% 75% 50% 61%
SC-str 67% 81% 55% 63% (75%) 75% 75% 70%
SC-wk 67% 81% 45% 55% 75% (75%) 75% 70%
PC 72% 87% 79% 83% 75% 75% (75%) 61%
DC 100% 93% 86% 60% 75% 75% 75% (100%)

Lamport’s Bakery
BC CC CoCC GACC SC-str SC-wk PC DC

BC (100%) 100% 95% 89% 33% 100% 60% 70%
CC 100% (100%) 95% 89% 33% 100% 60% 70%
CoCC 100% 100% (100%) 95% 33% 100% 60% 70%
GACC 100% 100% 100% (95%) 33% 100% 60% 70%
SC-str 100% 100% 95% 89% (100%) 100% 100% 100%
SC-wk 100% 100% 95% 89% 100% (100%) 100% 100%
PC 75% 70% 65% 55% 100% 100% (100%) 81%
DC 100% 100% 95% 89% 33% 100% 100% (100%)

Peterson
BC CC CoCC GACC SC-str SC-wk PC DC

BC (100%) 85% 72% 80% 67% 67% 60% 100%
CC 100% (100%) 81% 80% 67% 67% 60% 100%
CoCC 100% 100% (100%) 95% 67% 67% 60% 100%
GACC 100% 100% 81% (95%) 67% 67% 60% 100%
SC-str 100% 85% 63% 70% (100%) 100% 100% 100%
SC-wk 100% 85% 63% 70% 100% (100%) 100% 100%
PC 100% 100% 81% 75% 100% 100% (100%) 100%
DC 100% 85% 72% 80% 67% 67% 80% (100%)

5 Experiment Results

Table 1 shows the result data for the cross-coverage experiments among the criteria.
The first model we used in the experiment describes the general Inter-ORB Proto-
col (GIOP), a key component of the Object Management Group (OMG)’s Common
Object Request Broker Architecture (CORBA) specification [18]. We also have a
Promela model of a sliding window protocol, which depicts the behavior of the clas-
sic network protocol [24]. The other two examples we used are models of Lamport’s
Bakery algorithm [20] and Peterson’s algorithm [23] for mutual exclusion problem.

An Unified Framework for Evaluating Test Criteria 15

All of these models have well defined LTL properties as their correctness requirments
specifications.

In Table 1, the abbreviations in the beginning of each column and each row stands
for the coverage criteria introduced in Section 3. In particular, SC-str and SC-wk
represents the strong and weak variants of Büchi automata state coverage. The left
column lists test criteria from which we generate test suites, and the top row lists
test criteria by which we measure the cross coverage of these test suites. For each
criterion, the maximal number of test cases can be generated is equal to the number of
the trap properties. The figure in the parenthesis represent the percentage of feasible
test cases, i.e. the number of trap properties that the model check is able to find a
counterexample against, produced with respect to the criteria itself. For the GIOP
model, since every branch in the model is only a single clause guard, which makes
the clause coverage criteria equivalent to the branch coverage criterion, we omit the
three corresponding rows.

The overall result indicates that the specification-based coverage criteria show
more competent performance, and in most cases have better cross coverage results
than the other traditional criteria. For example, in the experiments for the mutual
exclusion algorithms, the Büchi Automata state coverage criterion triumphs with a
complete full coverage over all the criteria, with property coverage criterion following
as a close second. The branch coverage and data-flow coverage are able to achieve
a high percentage over each other, mostly because the models are so strictly defined
that the branches and definition clear paths are heavily overlapped. However, they fell
short on evaluating the critical properties of the algorithms, which is the essence of
the models. Büchi automata state coverage and property coverage criteria, however,
are able to generate test cases that are more semantically oriented. Since the models
are compactedly defined, these test cases can easily cover the structure elements in
the source codes.

One point worth noting, though, is that in the experiment for GIOP and sliding
window model, the vacuity-based coverage criteria did not cover the logic branches
and the data flow paths perfectly. The reason behind this is for both protocols, the
properties being tested only focus on some of the behaviors described in the model.
Take the GIOP model for instance, the property is only concerned about the recipient
when it is waiting for or receives a message. It does not involve other functional-
ities of the model. Therefore the generated counterexamples bypassed some code
segments and could not cover the branches and paths. Such facts are more obviously
demonstrated while comparing to the clause coverage criteria. Since even one branch
is covered, there are several possible scenarios that each clause in the branch guard
might be of different values and possible to be left out.

This observation leads to an important conclusion, that the quality of the temporal
property plays a significant role in the property-based testing. A property that is more
relevant with the model can result in better coverage. On the other hand, the result
on cross coverage could prompt engineers to examine and refine a system design and
its properties. Lower coverage implies that the properties are likely to be relevant
with parts of the models. Two directions are possible for the engineers to make use
of the results. Either the property could be extended to describe the model’s behavior
more thoroughly, or it is more suitable to break the model down and focus on the

16 Bolong Zeng, Li Tan

Table 2 Cross-coverage comparison results for BC+PC

Model BC CC CoCC GACC SC-str SC-wk PC DC
GIOP 100% 100% 100% 100% 100% 100% 75%* 100%
Sliding Window 100% 93% 94% 85% 75% 75% 75%* 61%
Lamport’s Bakery 100% 100% 95% 89% 100% 100% 100% 85%
Peterson 100% 100% 81% 80% 100% 100% 100% 100%

parts that are correspondent to the properties. Our future research includes the goal
of developing a strategy of performing property refinement to enhance the testing
approach with the help of the outcome of the aforementioned experiments.

Another difference among these criteria, is that while the Büchi automaton state
coverage and property coverage criteria are more semantically oriented and better at
finding errors, it is slightly more difficult to interpret the results since the test ob-
jectives are not directly source related. The syntax-based coverage criteria, however,
benefit from their nature of being white-box testing methods, thus more suitable for
debugging.

One extension of the experiment is to generate a test suite with respect to two or
more test criteria, and then see if such test suite would yield better result in cross-
coverage percentage. We run the experiment again on the four models to explore
this issue, choosing branch coverage criterion and property coverage criterion as the
basis. They represent two different perspectives on testing, one structural, the other
semantic-oriented. Therefore, the generated test cases are more likely to explore dif-
ferent aspects of the models. The cross-coverage results of the combined test suite is
list in Table 2.

We shall first note that, as shown in Table 2, PC is not fully covered in GIOP and
Sliding Window models (marked with an asterisk) by the new test suite. The reason is
that for these two models, some of the trap properties of PC are unfeasible to generate
test cases. The results show that the new test suite demonstrates an improved cross-
coverage percentage over the test suites derived from the stand-alone test criteria.
Such outcome should be expected since at the very least, the result would combine
the higher percentage from each original test criterion. Furthermore, in some cases,
the combined-criteria derived test suite would demonstrate a better coverage than
both of the original ones. For instance in the Lamport’s bakery algorithm model,
the new test suite covers 85% of the data-flow coverage criterion, while the original
percentages are 70% and 81% respectively. Such combination can make use of the
strength of multiple test criteria, especially when they examine different aspects of
the models. In a word, our approach can be used to conduct thorough testing with
respect to both the structural elements of the model, and the semantic requirements
established via temporal properties.

In general, the approach we present here can be viewed as a unified framework for
evaluating multiple test criteria based on their cross coverage performances. Many
other test criteria can be fit into the framework for comparison purpose. It is also
possible to incorporate other related techniques, such as property refinement or de-
bugging strategy so that the framework could be further improved and thus serve a

An Unified Framework for Evaluating Test Criteria 17

broader purpose. A systematic approach towards these two directions shall be de-
signed to take full advantage of the result. From our observation, the result is able
to unveil the effectiveness and strength of the test coverage criteria being used in
model-checking-assisted test generation.

6 Conclusions

We presented a uniform model-checking-assisted framework for generating test cases
for various criteria and then comparing the performance of these criteria. We de-
scribed in details the methodologies and techniques used in our framework. Our
framework is able to incorporate a variety of test criteria, including traditional structure-
based coverage criteria (e.g. branch coverage and data flow coverage criteria), syntax-
oriented specification-based criteria (e.g. LTL property-based coverage criterion),
and semantics-oriented specification-based criteria (e.g. Büchi automaton-based cov-
erage criteria). The framework assesses the preformance of different test criteria
by measuring cross coverage of generated test suites. We proposed an approach to
streamline test case extraction and cross-coverage measurement. Our results validate
the benefits of specification-based criteria used in model-checking-assisted test gen-
eration, but the results also indicate that such benefits largely depend on the quality
of system specification. We analyze the outcome with respect to the different char-
acteristics of the various test coverage criteria, and explain the rationales behind the
outcome.

Current model-checking-assisted test case generation technique mainly uses the
existing counter-example generation capability of a model checker as its underlying
mechanism. While searching in the state space of a model, a model checker collects
much more information beyond a counter-example [30]. The additional information
could be utilized to derive a more sophisticated testing strategy. This new testing strat-
egy may guide a user interactively when debugging a system design, or suggesting
possible ways of refining temporal properties. This new approach, which we refer to
as evidence-based test case generation, is a future direction to extend our current work
towards a more general model-checking-assisted test case generation framework.

References

1. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests from specifications.
In: In Proceedings of the Second IEEE International Conference on Formal Engineering Methods
(ICFEM’98), pp. 46–54. IEEE Computer Society (1998)

2. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in actl formulas. In:
Proceedings of the 9th International Conference on Computer Aided Verification, CAV ’97. Springer-
Verlag, London, UK, UK (1997)

3. Beyer, D., Chlipala, A.J., Majumdar, R., Henzinger, T.A., Jhala, R.: Generating tests from counterex-
amples. In: ICSE’04: Proceedings of the 26th International Conference on Software Engineering, pp.
326–335. IEEE Computer Society, Washington, DC, USA (2004)

4. Clarke, E., Jha, S., Lu, Y.: Tree-like counterexamples in model checking. In: Logic in Computer
Science, (2002)

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time
temporal logic. In: Logic of Programs, Workshop. Springer-Verlag, London, UK (1982)

18 Bolong Zeng, Li Tan

6. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of counterexamples and
witnesses in symbolic model checking. In: Proceedings of the 32nd annual ACM/IEEE Design Au-
tomation Conference, DAC ’95. ACM, New York, NY, USA (1995)

7. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
8. Engels, A., Feijs, L.M.G., Mauw, S.: Test generation for intelligent networks using model checking.

In: Proceedings of the Third International Workshop on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’97. Springer-Verlag, London, UK, UK (1997)

9. Fraser, G., Gargantini, A.: An evaluation of model checkers for specification based test case genera-
tion. In: ICST ’09: Proceedings of the 2009 International Conference on Software Testing Verification
and Validation. IEEE Computer Society, Washington, DC, USA (2009)

10. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from requirements specifica-
tions. In: Proceedings of the 7th European software engineering conference held jointly with the
7th ACM SIGSOFT international symposium on Foundations of software engineering, ESEC/FSE-7.
Springer-Verlag, London, UK (1999)

11. Heimdahl, M., Rayadurgam, S., Visser, W.: Specification centered testing. In: Proceedings of the
Second International Workshop on Automated Program Analysis, Testing and Verification (2001)

12. Heimdahl, M.P., Rayadurgam, S., Visser, W.: Specification centered testing. In: Second International
Workshop on Analysis, Testing and Verification. Toronto, Canada (2001)

13. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23 (1997)
14. Holzmann, G.J.: The Model Checker {SPIN}. IEEE Transactions on Software Engineering 23(5),

279–295 (1997)
15. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model checking. In: ICSE

’03: Proceedings of the 25th International Conference on Software Engineering. IEEE Computer So-
ciety, Washington, DC, USA (2003)

16. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test coverage and genera-
tion. In: Proceedings of the 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’02. Springer-Verlag, London, UK (2002)

17. Jorgensen, P.C.: Software Testing: A Craftsman’s Approach, 1st edn. CRC Press, Inc., Boca Raton,
FL, USA (1995)

18. Kamel, M., Leue, S.: Validation of the general inter-orb protocol (giop) using the spin model-checker.
In: In Software Tools for Technology Transfer. Springer-Verlag (1998)

19. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking. Lecture Notes In
Computer Science p. 82 (1999)

20. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Commun. ACM 17
(1974)

21. Lerda, F., Visser, W.: Addressing dynamic issues of program model checking. In: Lecture Notes in
Computer Science. Springer-Verlag (2001)

22. MathWorks: Simulink Design Verifier (2007). URL http://www.mathworks.com/
products/sldesignverifier/

23. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3) (1981)
24. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach, 3rd Edition. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA (2003)
25. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information. IEEE Trans. Softw.

Eng. 11 (1985)
26. Rayadurgam, S., Heimdahl, M.P.: Coverage based test-case generation using model checkers. In:

Proceedings of the 8th Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS 2001). IEEE Computer Society (2001)

27. Rushby, J.: Using model checking to help discover mode confusions and other automation surprises.
Reliability Engineering and System Safety 75(2) (2002)

28. SC-167 Committee: Software Considerations in Airborne Systems and Equipment Certification. Tech.
rep., Radio Technical Commission for Aeronautics (1992)

29. Tan, L.: State coverage metrics for specification-based testing with büchi automata. In: Proceedings
of the 5th international conference on Tests and proofs, TAP’11. Springer-Verlag, Berlin, Heidelberg
(2011)

30. Tan, L., Cleaveland, R.: Evidence-based model checking. In: In Computer-Aided Verification.
Springer-Verlag (2002)

31. Tan, L., Sokolsky, O., Lee, I.: Property-coverage testing. Tech. rep., Department of Computer and
Information Science, University of Pennsylvania (2003)

http://www.mathworks.com/products/sldesignverifier/
http://www.mathworks.com/products/sldesignverifier/

An Unified Framework for Evaluating Test Criteria 19

32. Tan, L., Sokolsky, O., Lee, I.: Specification-based Testing with Linear Temporal Logic. In: the pro-
ceedings of IEEE Internation Conference on Information Reuse and Integration (IRI’04). IEEE soci-
ety (2004)

33. kuen Tsay, Y., fang Chen, Y., hsien Tsai, M., nien Wu, K., chin Chan, W.: Goal: A graphical tool
for manipulating bchi automata and temporal formulae. In: In Proceedings of TACAS (2007), LNCS
4424. Springer (2007)

	1 Introduction
	2 Preliminaries
	3 Coverage Criteria
	4 Experiment Methodology and Workflow
	5 Experiment Results
	6 Conclusions

