
Specification-Based Testing with Buchi Automata:
Transition Coverage Criteria and Property

Refinement

Li Tan and Bolong Zeng
School of Electrical Engineering and Computer Science

Washington State University, Richland, WA 99354
{litan,bzeng}@wsu.edu

Abstract—Büchi automaton is instrumental in linear-temporal
logic model checking. It has been used in formalizing linear
temporal requirements as well as in designing model checking
algorithms. In this work we extend Büchi automaton to the
domain of specification-based testing. We developed test criteria
and techniques essential for testing a system with a formal
requirement in Büchi automata. At the core of our approach
are two Büchi-automaton-based test criteria that select test cases
based on their relevancy to a requirement in Büchi automaton.
The relevancy is based on the notion of transition coverage
on Büchi automaton. We define “weak” and “strong” variants
of transition coverage criteria that reflect the non-deterministic
nature of a Büchi automaton. The new transition coverage
criteria out-perform state coverage criteria in [1], both on
theory and in our experiments. Our experiment demonstrates
the effectiveness of the proposed transition coverage criteria by
measuring cross-coverage of these transition coverage criteria
versus other existing test criteria. To improve test efficiency, we
provide model-checking-assisted algorithms that fully automate
test vector generations for the transition coverage criteria. In
addition, we propose property refinement using the feedback from
the test generation algorithm. The benefits of our approach are
two-fold: (1) it enables the effective and efficient testing with
formal requirements in Büchi automata; and, (2) our approach
is capable of not only finding bugs in a system, but also identifying
deficiency in its requirement via property refinement.

I. INTRODUCTION

Testing and formal verification are two commonly used ver-
ification and validation (V&V) techniques. They provide bene-
fits that are often complementary to each other. Testing checks
the behaviors of a system under controlled input stimuli, also
known as test cases. As a traditional V&V technique, testing
often plays a central role in a V&V process. Testing is also
an important component of many software quality standards.
For example, DO-178, the software quality standard for safety-
critical avionic software, has set the testing requirements for
various structural criteria, including the MC/DC criterion [2].
Heimdahl et. al [3] estimated that V&V activities can consume
50%-70% of resource in developing high-dependable software,
and much of the cost are incurred during testing. One drawback
of testing, as Dijkstra once famously noted, is “testing shows
the presence, not the absence of bugs”. A constant theme in
software engineering research is how to make testing more
effective and efficient.

Formal verification, on the other hand, is the technique
to build a mathematically rigid proof for the correctness of

a system with respect to its specifications. Formal verifica-
tion, especially model checking (cf. [4]), has enjoyed great
successes in industry practices. With increasing acceptance of
formal verification, formal specification of high quality has
become common, and an array of efficient formal verification
tools have been developed.

Given their pros and cons, testing and formal verification
would likely co-exist as two most important V&V techniques
in the foreseeable future. A theme of our research is how to
harness the synergy of both techniques to build more efficient
and effective V&V processes. In this research we address
this research challenge in context of specification-based test-
ing with Büchi automaton. Büchi automaton is a form of
ω-automata. It accepts ω-language, an extension of regular
languages with infinite words. Büchi automaton has been
instrumental in developing linear temporal model checking. It
has been used to specify linear temporal properties of a system,
and to develop efficient linear temporal model checking algo-
rithms [5], [6]. Encoding requirement in a rigorous formalism
such as Büchi automaton helps remove ambiguity in system
specification and facilitates formal verification. With demands
for high-dependable systems and a surge of popularity of
formal verification in recent years, there are an increasing
amount of system requirements specified in a formal language
such as Büchi automaton and its related temporal logic LTL
(Linear Temporal Logics). A research question is how to
efficiently and effectively test a system with its requirements
specified in Büchi automata.

In this work we developed a set of techniques that enable
the efficient and effective testing of a system with a formal
requirement in Büchi automaton. To improve the effectiveness
of testing, we center testing around the formal requirement.
Specifically, we relate testing to a Büchi automaton by intro-
ducing transition coverage metrics and criteria. A transition
coverage metric measures how well a test suite covers the
transitions of a Büchi automaton. To reflect the undeterministic
nature of a Büchi automaton, we define “weak” and “strong”
variants of transition coverage metrics.

To improve the efficiency of testing, we developed model-
checking-assisted test generation algorithms for the proposed
transition coverage criteria. We implemented these algorithms
on an off-the-shelf linear temporal model checker SPIN [7].
At the core of these algorithms are graph-transformation
techniques that transform a Büchi automaton to a set of “trap”

GBA transition
coverage criteria

Specifications given
in GBA: 𝐵

Trap properties
in TE-GBA: 𝐵𝑠→𝑠′

Negated
TE-GBA:
𝐵𝑠→𝑠′

Negation

Model checker

Weak coverage
test suite

Linear
counterexamples

System model

Graph
transformation

Trap properties
in TM-GBA:
𝐵(𝑠 → 𝑠′)

TM-GBA:
𝐵(𝑠 → 𝑠′)

Linear
counterexamples

Strong coverage
test suite

Repeat for every
transition: 𝑠 → 𝑠′ in 𝐵

Fig. 1. The workflow of model-checking-assisted test case generation under
transition coverage criteria for Büchi automaton.

automata. Each “trap” automaton specifies a test objective that
covers a particular transition of the automaton. Figure 1 shows
the workflow of model-checking-assisted test case generation
under transition coverage criteria for Büchi automaton.

Our proposed approach also extends the benefits of testing
from debugging to improving requirements. We developed a
requirement refinement technique using the information from
test case generation. This closes an important feedback loop
between testing and requirement: normally requirements drive
testing activities; using our approach, testing also helps refine
a requirement.

We conduct a systematical computation study to compare
the effectiveness of the proposed transition coverage criteria
versus those of other existing criteria, including traditional
structural and logical testing criteria, as well as the state
coverage criteria for Büchi automaton. The effectiveness is
measured by the cross-coverage between the transition cover-
age metrics and other existing testing metrics. The result of
our computational study clearly indicates the effectiveness of
our transition coverage criteria.

The rest of the paper is organized as follows: Section II
defines the notations that will be used in the rest of the paper;
Section III introduces two variants of transition coverage
metrics and criteria for Büchi automata; Section IV describes
the model-checking-assisted test case generation algorithms
for the transition coverage criteria; Section V discusses the
requirement refinement using the feedback from the model-
checking-assisted test case generation; Section VI discusses
the result of our computational study on the performance
comparison between the new criteria and other existing test
criteria; and finally Section VII concludes the paper.

A. Related Works

As part of our approach, we use model checkers to au-
tomate test generation for transition coverage criteria. Model-
checking-assisted test case generation attracted much research
interest in recent years. It uses highly efficient model checking
algorithms to improve the efficiency of test case generation. In
[8] Ammann and Black defined a specification-based coverage
metric. Their primary motivation is to evaluate test suites
against the state/transition specifications used with model
checking. Our motivation is to develop coverage criteria that
may be used to automate test generation for specification-based

testing, and the formalism used in our study, Büchi-automaton,
enables us to specify more complicate temporal properties.

A central question in model-checking-assisted test genera-
tion is how to formulate test objectives as temporal properties
accepted by a model checker. It was shown that traditional
structural coverage criteria such as MC/DC Coverage can
be encoded in Computational Tree Logic (CTL) (cf. [9]),
which can be used by a model checker such as NuSMV
for generating tests. In [10] Calvagna et al. encoded several
combinatorial testing criteria in Linear Temporal Logic (LTL),
which was then used by the model checker SAL to generate
tests. In [11] Hong et al. expressed the dataflow criteria in
CTL. These previous works emphasize on applying model-
checking-assisted test generation to existing testing criteria. In
contrast, in [12] we considered test generation with temporal
logic requirements. We proposed a coverage metric measuring
how well a test covers a linear temporal logic requirement.
Our coverage metric in [12] is inspired by the notion of (non-)
vacuity in [13]. Intuitively the vacuity-based coverage criterion
requires a test suite to check the relevancy of each subformula
of a LTL property to a system. A similar strategy was described
in [14], [15]: the authors proposed a Unique-First-Cause (UFC)
coverage derived from the MC/DC criterion. They define
the satisfying paths over LTL temporal operators, setting up
a rigorous notion of requirements coverage over execution
traces. For a comparison of these techniques, interested readers
may refer to [9].

In [16], Fujiwara et al. proposed the partial W-method as
the method for test case selection. It used finite state machine
coverage as a criterion to determine whether the test suite
is adequate or not. While our approach share the similar
reasoning of their works, the core difference lies in the fact that
Fujiwara et al. based their test case selection standard upon the
model, i.e., the system being tested. What we are proposing,
however, focuses on the requirements depicted in the form
of Büchi automaton. We incorporate the FSM model for the
system being tested as well, but we place our attention on the
behaviors of the system, whose characteristics are described
by the infinite-words accepting Büchi automaton.

This work can also be seen as an extension of our previous
work in [12]. Whereas our vacuity-based coverage metric
characterizes test cases in their relevancy to temporal spec-
ifications in LTL, a feature but also a critic of the metric
is that it heavily depends on syntactical structures of LTL
formulae. For example, the LTL formula f0 : G(brake ⇒
F stop) ∧ (brake ⇒ F stop) is semantically equivalent to
f1 : G(brake ⇒ F stop). Yet for vacuity-based coverage
metric, the coverage of a test case for f0 always subsumes its
coverage for f1. Defining coverage metrics based on Büchi au-
tomata helps alleviate this syntactical dependency. Moreover,
there are several existing algorithms for minimizing Büchi
automata, which can be used as a pre-process to further reduce
syntactical variance of otherwise semantically equivalent Büchi
automata. In addition, in this paper we will also discuss
property refinement based on the proposed coverage metrics.

II. PRELIMINARIES

A. Kripke Structures, Traces, and Tests

We model systems as Kripke structures. A Kripke structure
is a finite transition system in which each state is labeled with
a set of atomic propositions. Semantically atomic propositions
represent primitive properties held at a state. Definition 2.1
formally defines Kripke structures.

Definition 2.1 (Kripke Structures): Given a set of atomic
proposition A, a Kripke structure is a tuple 〈V, v0,→,V〉,
where V is the set of states, v0 ∈ V is the start state,
→⊆ V × V is the transition relation, and V : V → 2A labels
each state with a set of atomic propositions.

We write v → v′ in lieu of 〈v, v′〉 ∈→. We let a, b, · · ·
range over A. We denote A¬ for the set of negated atomic
propositions. Together, P = A ∪ A¬ defines the set of
literals. We let l1, l2, · · · and L1, L2, · · · range over P and
2P , respectively.

We use the following notations for sequences: let β =
v0v1 · · · be a sequence, we denote β[i] = vi for i-th element of
β, β[i, j] for the subsequence vi · · · vj , and β(i) = vi · · · for the
i-th suffix of β. A trace τ of the Kripke structure 〈V, v0,→,V〉
is defined as a maximal sequence of states starting with v0

and respecting the transition relation →, i.e., τ [0] = v0 and
τ [i− 1]→ τ [i] for every i < |τ |. We also extend the labeling
function V to traces: V(τ) = V(τ [0])V(τ [1]) · · ·.

Definition 2.2 (Lasso-Shaped Sequences): A sequence τ
is lasso-shaped if it has the form α(β)ω , where α and β are
finite sequences. |β| is the repetition factor of τ . The length
of τ is a tuple 〈|α|, |β|〉.

Definition 2.3 (Test and Test Suite): A test is a word on
2A, where A is a set of atomic propositions. A test suite ts is
a finite set of test cases. A Kripke structure K = 〈V, v0,→,V〉
passes a test case t if K has a trace τ such that V(τ) = t. K
passes a test suite ts if and only if it passes every test in ts.

B. Generalized Büchi Automata

Definition 2.4: A generalized Büchi automaton is a tuple
〈S, S0,∆,F〉, in which S is a set of states, S0 ⊆ S is the
set of start states, ∆ ⊆ S × S is a set of transitions, and the
acceptance condition F ⊆ 2S is a set of sets of states.

We write s → s′ in lieu of 〈s, s′〉 ∈ ∆. A generalized
Büchi automaton is an ω-automaton. That is, it can accept the
infinite version of regular languages. A run of a generalized
Büchi automaton B = 〈S, S0,∆,F〉 is an infinite sequence
ρ = s0s1 · · · such that s0 ∈ S0 and si → si+1 for every i ≥ 0.
We denote inf(ρ) for a set of states appearing for infinite times
on ρ. A successful run of B is a run of B such that for every
F ∈ F , inf(ρ) ∩ F 6= ∅.

To accept infinite words, we extend Definition 2.4 with an
alphabet, which is a powerset of atomic propositions A. In this
work we extend Definition 2.4 using state labeling approach
in [5] with one modification: we label the state with a set of
literals, instead of with a set of sets of atomic propositions in
[5]. A set of literals is a succinct representation of a set of
sets of atomic propositions: let L be a set of literals labeling
state s, then semantically s is labeled with a set of sets of

atomic propositions Λ(L), where Λ(L) = {A ⊆ A | (A ⊇
(L ∩A)) ∧ (A ∩ (L ∩A¬) = ∅)}, that is, every set of atomic
propositions in Λ(L) must contain all the atomic propositions
in L but none of its negated atomic propositions. In the rest
of the paper, we use Definition 2.5 for (labeled) generalized
Büchi automata (GBA).

Definition 2.5: A labeled generalized Büchi automaton is
a tuple 〈P, S, S0,∆,L,F〉, in which 〈S, S0,∆,F〉 is a gen-
eralized Büchi automaton, P is a set of literals, and the label
function L : S → 2P maps each state to a set of literals.

A GBA B = 〈A ∪ A¬, S, S0,∆,L,F〉 accepts infinite
words over the alphabet 2A. Let α be a word on 2A, B has a
run ρ induced by α, written as α ` ρ, if and only if for every
i < |α|, α[i] ∈ Λ(L(ρ[i])). B accepts α, written as α |= B if
and only if B has a successful run ρ such that α ` ρ.

GBAs are of special interests to the model checking com-
munity. Because a GBA is an ω-automaton, it can be used to
describe temporal properties of a finite-state reactive system,
whose executions are infinite words of an ω-language. For-
mally, a GBA accepts a Kripke structure K = 〈V, v0,→,V〉,
denoted as K |= B, if for every trace τ of K, V(τ) |= B.
Efficient Büchi-automaton-based algorithms have been devel-
oped for linear temporal model checking. The process of linear
temporal model checking generally involves translating the
negation of a linear temporal logic property φ to a GBA B¬φ,
and then checking the emptiness of the product of B¬φ and K.
If the product automaton is not empty, then a model checker
usually outputs an accepting trace of the product automaton,
which serves as a counterexample to K |= φ.

III. TRANSITION COVERAGE METRICS AND CRITERIA

Definition 3.1 (Covered Transitions): Given a generalized
Büchi automaton B = 〈P, S, S0,∆,L,F〉, a test t weakly
covers a transition s → s′ if B has a successful run ρ such
that t ` ρ and ss′ is a substring of ρ. A test t strongly covers
a transition s→ s′ if t |= B, and for B’s every successful run
ρ such that t ` ρ, ss′ is a substring of ρ.

Since a generalized Büchi automaton B may have non-
deterministic transitions, B may have more than one successful
run induced by a test. A weakly covered transition s → s′

shall appear on some successful runs induced by t, whereas a
strongly covered transition s → s′ has to appear on every
successful run induced by t. By imposing the additional
requirement that t shall also satisfy B, Definition 3.1 also
requires that at least one of such successful runs exists for
a transition s→ s′ strongly covered by t.

Definition 3.2 (Weak Trans. Cov. Metrics and Criteria):
Given a generalized Büchi automaton B = 〈P, S, S0,∆,L,F〉,
let δ ⊆ ∆ be a set of transitions, the weak transition coverage
metric for a test suite T on δ is defined as |δ

′|
|δ| , where δ′ =

{s→ s′ | (s→ s′) ∈ δ ∧ ∃t ∈ T.(t weakly covers (s→ s′))}.
T weakly covers δ if and only if δ′ = δ.

Definition 3.3 (Strong Trans. Cov. Metrics and Criteria):
Given a generalized Büchi automaton B = 〈P, S, S0,∆,L,F〉,
let δ ⊆ ∆ be a set of transitions, the strong transition coverage
metric for a test suite T on δ is defined as |δ

′|
|δ| , where δ′ =

{s→ s′ | (s→ s′) ∈ δ ∧ ∃t ∈ T.(t strongly covers (s→ s′)}.
T strongly covers δ if and only if δ′ = δ.

Theorem 3.4 shows that the strong transition coverage
criterion subsumes the weak transition coverage criterion.

Theorem 3.4: Given a GBA B = 〈P, S, S0,∆,L,F〉, let
δ ⊆ ∆ be a set of transitions, if a test suite T strongly covers
δ, then T also weakly covers δ.

Proof: Since T strongly covers δ, by Definition 3.3, for
every (s→ s′) ∈ δ, there exists a t such that (i) t satisfies B;
and (ii) for every B’s successful run ρ such that t ` ρ, ss′ is a
substring of ρ. By (i) and (ii), there exists at least one ρ such
that t ` ρ and ss′ is a substring of ρ. Therefore, by Definition
3.3, T also weakly covers S. 2

It shall be noted that covering transitions of a GBA is very
different from covering transitions of a Finite State Machine
(FSM). Although we use Kripke structure, which is essentially
a FSM, to model a system, the criteria defined above focus on
covering a property in the form of Büchi automata. By doing
so, we are able to measure the semantic adherence of a system
with respect to the property, instead of examining only the
structure of the system. While focusing on GBA, we are able
to reason and test subtle temporal behaviors of the system that
cannot be captured by a FSM.

IV. MODEL-CHECKING-ASSISTED TEST GENERATION
FOR TRANSITION COVERAGE

Our model-checking-assisted test case generation algo-
rithms use a Büchi-automaton-based model checker as their
underlying engine for searching test cases under a test crite-
rion. Model checking via Büchi automaton is a well-studied
subject, and efficient algorithms have been developed over
the years (cf. [5]). A Büchi-automaton-based linear temporal
model checker such as SPIN [17] verifies a system K against a
property φ in two stages: first, it constructs a Büchi automaton
B¬φ for ¬φ; Second, it checks the emptiness of the product
of B¬φ and K. If the product automaton is empty, then
K 6|= B¬φ, that is, K satisfies φ. It shall be noted that
although we use SPIN in an implementation of our test-case
generation algorithms, these algorithms are not tied to any
particular model checker. In fact, the algorithms designate a
routine MC isEmpty as an abstraction of the core emptiness
checking algorithm deployed by many Büchi-automaton-based
model checkers. MC isEmpty(B,K) checks the emptiness
of the product of a Büchi automaton B and a Kripke struc-
ture K. B accepts K if the result is positive; Otherwise,
MC isEmpty(B,K) returns a trace α of K that satisfies
B. α may be mapped to a word t = Vα, which specifies a test
case. In model-checking-assisted test case generation, a Büchi
automaton used as the input to MC isEmpty(B,K) encodes
a test objective for a test criterion, and the trace that it returns
may be used to construct a test case for that test objective.

The central question in model-checking-assisted test case
generation is how to encode a test criterion as temporal
properties accepted by a model checker. By Definitions 3.2
and 3.3, a transition coverage criterion may be translated
to a set of test objectives, each of which covers a specific
transition. Each test objective is captured by a “trap” property
in Büchi automaton. For weak transition coverage, a trap
property covering a transition s → s′ is a transition marking
general Büchi automaton (TM-GBA) for s → s′ (Definition
4.1). For strong transition coverage, a trap property covering

¬p ¬t ¬p ¬t

¬p ¬t

t

¬p ¬t

t

¬p ¬t

¬p

t

0S

3S

2S

1S

Fig. 2. A general Büchi automaton representing the LTL property G(¬t ⇒
((¬p U t) ∨G¬p)).

the transition s→ s′ is the negation of a transition excluding
general Büchi automaton (TE-GBA) for s → s′ (Definition
4.3). Our test generation algorithms used these automata as
trap properties to generate test cases.

For a Büchi automaton B and a transition s → s′ of B,
the corresponding TM-GBA B(s → s′) keeps two copies of
B, and it indexes the states of these copies with 0 and 1,
respectively. Two copies are linked by the transition 〈s, 0〉 →
〈s′, 1〉. The first copy keeps the start states of B and the second
copy keeps the acceptance states. Therefore, a successful run
of B(s→ s′) must travel from a start state of the first copy to
some acceptance states in the second copy, and the only way to
do so is to go through the bridging transition 〈s, 0〉 → 〈s′, 1〉.
By the construction of the TM-GBA B(s→ s′), a trace τ can
be accepted by B(s → s′) if and only if τ can be accepted
by B and it weakly covers s → s′. The formal definition of
TM-GBA is presented in 4.1.

Definition 4.1 (TM-GBA): Let B = 〈P, S, S0,∆,L,F〉
be a GBA, B’s transition marking general Büchi automaton
B(s → s′) has form of B(s → s′) = 〈P, S × {0, 1}, S0 ×
{0},∆′,L′,F ′〉, where,

• ∆′ =
(⋃

(s→s′)∈∆{〈s, 0〉 → 〈s′, 0〉, 〈s, 1〉 → 〈s′, 1〉}
)
∪

{〈s, 0〉 → 〈s′, 1〉};
• For every s ∈ S, L′((s, 0)) = L′((s, 1)) = L(s);

• F ′ =
⋃
F∈F{F × {1}}.

We use an example from our experiments to illustrate
the construction. Figure 2 is a generalized Büchi automaton
that is semantically equivalent to the LTL property: G(¬t ⇒
((¬pU t)∨G¬p)). This property specifies a temporal require-
ment for the GIOP model, the general Inter-Object Request
Brokers (ORB) Protocol [18]. Briefly speaking, t stands for
a request being sent and p stands for an agent receiving a
reply in this formula. Semantically, the formula holds only

¬p ¬t

¬p ¬t¬p ¬t

t

¬p ¬t

t

¬p ¬t

¬p

t

¬p ¬t ¬p ¬t

¬p ¬t

t

¬p ¬t

t

¬p ¬t

¬p

t

¬p ¬t

>< 1,1S

>< 1,0S

>< 1,3S

>< 1,2S

>< 0,0S

>< 0,3S

>< 0,2S

>< 0,1S

Fig. 3. A transition marking general Büchi automaton covering the transition s0 → s1 for the GBA in Figure 2.

Algorithm 1 TestGen WTC(B = 〈P, S, S0,∆,L,F〉, Km =
〈S, s0,→,V〉)
Require: B is GBA and Km is a system model
Ensure: Return the test suite ts that weakly covers all the

transitions of B and Km passes ts. Return ∅ if such a test
suite is not found;

1: for every s→ s′ ∈ ∆ do
2: Construct a TM-GBA B(s → s′) from B that marks

the transition s→ s′;
3: τ = MC isEmpty(B(s→ s′),Km);
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: return ∅;
8: end if
9: end for

10: return ts;

when an agent would not receive any reply until a request has
been made. Figure 3 shows a TM-GBA covering the transition
s0 → s1 for the GBA in Figure 2. Essentially, the weak
transition coverage criterion defines a plain coverage of all
the transitions in a GBA, since any test that can induce one
successful run will suffice to cover the transition.

Based upon the weak transition coverage criterion, Al-
gorithm 1 generates a test suite that weakly covers all the
transitions of a given GBA B. For every transition s → s′

of the GBA, the algorithm builds a TM-GBA B(s → s′).
The algorithm then calls the emptiness checking routine
MC isEmpty on B(s → s′) and a system model Km. If
the product of B(s→ s′) and the system model Km is not
empty, MC isEmpty returns a successful run of the product
of B(s → s′) and the system model Km. A test case related
to this successful run is then added to the resulting test suite.
Theorem 4.2 shows the correctness of Algorithm 1.

Theorem 4.2: If the test suite ts returned by Algorithm 1
is not empty, then (i) Km passes ts and (ii) ts weakly covers
all the transitions of B.

Proof: (i) For each t ∈ ts, there is a related transition s→
s′ and MC isEmpty(B(s → s′),Km) returns a successful
run of the production of B(s→ s′) and Km such that V(τ) =
t. Since any successful run of the production of B(s → s′)
and Km shall also be a trace of Km, τ is also a trace of Km.
Therefore, Km shall pass t. That is, Km passes every test case
in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related
transition s → s′ and a successful run τ of the production
of B(s → s′) and Km such that V(τ) = t. We will show
that t weakly covers s → s′. By Definition 3.2, we need to
show that there is a successful τ ′ of B such that τ ′ takes the
transition s → s′. We obtain the τ ′ by taking the projection
of τ on the states of B as follows: since τ is a run of the
production of the TM-GBA B(s → s′) and Kripke structure
Km, each state on τ has the form of 〈〈s′, i〉, v〉, where s′

is a state of B, i ∈ {0, 1} is an index number marking the
states in the TM-GBA B(s → s′), and v is a state of Km.
We project the state 〈〈s′, i〉, v〉 to the state s′ on B. Let τ ′ be
the resulting sequence. Clearly τ ′ is also a successful run of
B because, by Definition 4.1, each transition in B(s → s′)
is mapped to a transition in B and each acceptance state in
B(s→ s′) is mapped to an acceptance state in B. In addition,
τ has to go through 〈s, 0〉 → 〈s′, 1〉 because, by Definition
4.1, acceptance states of a TM-GBA are indexed by 1, whereas
start states are indexed by 0, and hence the only way that a
run of B(s → s′) is successful is that it has to go through
〈s, 0〉 → 〈s′, 1〉. Therefore, τ ′ has to take s → s′, and we
proved (ii). 2

Followed from their definitions, strong transition coverage
criterion subsumes its weak counterpart. To generate test cases
that strongly cover transitions in a Büchi automaton, we need
to construct a transition excluding generalized Büchi automa-
ton (TE-GBA). For a Büchi automaton B and a transition

¬p ¬t

¬p ¬t

t

¬p ¬t

t

¬p ¬t

¬p

t

0S

3S

2S

1S

Fig. 4. A transition excluding general Büchi automaton covering the transition
s0 → s1 for the GBA in Figure 2.

Algorithm 2 TestGen STC(B = 〈P, S, S0,∆,L,F〉, Km =
〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km

satisfies B;
Ensure: Return a test suite ts such that ts strongly covers all

the transitions of B and Km passes ts. Return ∅ if such
a test suite is not found;

1: for every (s→ s′) ∈ ∆ do
2: Bs→s′ = 〈P, S, S0,∆− {s→ s′},L,F〉;
3: τ = MC isEmpty(Bs→s′ ,Km));
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: return ∅;
8: end if
9: end for

10: return ts;

s → s′ of B, the TE-GBA Bs→s′ is obtained by simply
removing s → s′ from B. In this case, for every trace τ
accepted by B, τ does not satisfy Bs→s′ , i.e., τ |= Bs→s′ ,
the compliment Büchi automaton of TE-GBA if and only if τ
strongly covers s → s′. Figure 4 shows a TE-GBA covering
the transition s0 → s1 for the GBA in Figure 2.

Definition 4.3 (TE-GBA): Let B = 〈P, S, S0,∆,L,F〉 be
a GBA, a transition excluding generalized Büchi automaton
for s ∈ S is a GBA Bs→s′ = 〈P, S, S0,∆− {s→ s′},L,F〉.

Algorithm 2 generates a test suite that strongly covers the
transitions of a given GBA B. For every transition of the
GBA, the algorithm builds a TE-GBA. The algorithm then
calls the emptiness checking routine MC isEmpty on the
negation of the TE-GBA and the system model. If the product
of Bs→s′ and the system model Km is not empty, the function
MC isEmpty returns a successful run of the product of

Bs→s′ and the system model Km. Since this run is also a
trace of Km, it can be further mapped to a test case consisting
of a series of atomic propositions. The test case is then added
to the resulting test suite. Theorem 4.4 shows the correctness
of Algorithm 2.

Theorem 4.4: If the test suite ts returned by Algorithm 2
is not empty, then (i) Km passes ts; and (ii) ts strongly covers
all the transitions of B that can be strongly covered.

Proof: (i) For each t ∈ ts, there is a related transition
s→ s′ and MC isEmpty((Bs→s′),Km) returns a successful
run of the product of Bs→s′ and Km such that V(τ) = t.
Since any successful run of the production of Bs→s′ and Km

is also a successful run on Km, and Km shall pass t = V(τ).
Therefore, Km passes every test case in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related
transition s → s′ and a successful run τ of the production
of Bs→s′ and Km such that V(τ) = t. We will show that t
strongly covers the transition s→ s′.

First, since τ is also a trace of Km and Km satisfies B by
the precondition of Algorithm 2, τ |= B.

Next, we will prove by contradiction that every successful
run of B that is induced by the test case t shall take the
transition s → s′ at least once. Suppose not, and let ρ be
a successful run of B that is induced by t and ρ does not
take s → s′. It follows that ρ shall also be a successful run
of Bs→s′ , because the only difference between Bs→s′ and
B is that Bs→s′ does not have transition s → s′. Therefore,
t shall also be accepted by Bs→s′ . This contradicts to the
fact that t is accepted by Bs→s′ , which is a complement
of Bs→s′ , and thus should have no common words in their
languages. If t can be accepted by both automaton, then
t ∈ L(Bs→s′) ∩ L(Bs→s′) 6= ∅. Therefore, every successful
run of B that accepts t shall visit s→ s′ at least once. 2

A GBA B can be translated to a Büchi automaton (BA)
by indexing acceptance states. The resulting BA has the size
O(|F| · |B|), where |F| is the number of acceptance state sets
in B, and |B| is the size of B. The emptiness checking for a
BA can be done in linear time (cf. [19]). Therefore, generating
a test case weakly covering a transition can be done in
O(|K|·|F|·|B|), where |K| is the size of the model. Generating
a test suite weakly covering all the transitions in B can be done
in O(|K|·|F|·|B|2). Algorithm 2 starts with the construction of
a TE-GBA for a transition, which can be done in linear time. It
then negates the TE-GBA. Michel [20] provided a lower bound
of 2O(nlogn) for negating a BA of size n. Therefore, Algorithm
2 takes at least O(|K| · 2O(|F|·|B|log(|F|·|B|)) to generate a
test case strongly covering a transition and at least O(|K| ·
|B| · 2O(|F|·|B|log(|F|·|B|)) = O(|K| · 2O(|F|·|B|log(|F|·|B|)) to
generate a test suite strongly covering all the transitions of a
GBA. Generating test cases under strong transition coverage
is much more computationally expensive than doing so under
weak transiton overage, and the reason can be traced back to
Definition 3.1: strongly covering a transition s → s′ requires
all the successful runs induced by a test to visit s → s′ at
least once, whereas weakly covering s only requires a single
successful run visiting s→ s′.

V. TRANSITION-COVERAGE-INDUCED REQUIREMENT
REFINEMENT

Specification-based testing checks whether a system con-
forms to its specification. Insufficient coverage on a specifica-
tion may be caused by a problem in a system, but it may be
also due to the deficiency of the specification. For example,
the specification may be imprecise and/or too general. Our
model-checking-assisted test case generation algorithms use a
model-checker to systematically search the state space of a
system for test cases under a transition coverage criterion. We
use the information from this process of test case generation
to refine the formal specification in Büchi automaton.

In this work we consider the refinement with respect to
language inclusion. Formally we define B′ v B if and only if
L(B′) ⊆ L(B), that is, B′ is a refinement of B if the language
accepted by B′ is a subset of the language accepted by B.
By Definition 2.3, one can infer that a test accepted by B′

will also be accepted by B. In our transition-coverage-induced
requirement refinement, the feedback from model-checking-
assisted test case generation is used to refine a temporal
property B in Büchi automaton. The resulting property B′

will be more semantically restricted than the original property,
that is, B′ v B.

Lemma 5.1: Given a GBA B = 〈P, S, S0,∆,L,F〉 with
a transition s → s′ ∈ ∆, let Bs→s′ = 〈P, S, S0,∆ − {s →
s′},L,F〉 be the transition excluding GBA for s → s′, then
Bs→s′ v B.

Proof: By Definition 4.3 the TE-GBA Bs→s′ misses
transition s→ s′. It follows that the successful runs of Bs→s′
are those that do not visit s → s′ in the original GBA.
Therefore, L(Bs→s′) ⊆ L(B) and hence Bs→s′ v B. 2

Theorem 5.2: Given a GBA B = 〈P, S, S0,∆,L,F〉 with
a transition s→ s′ ∈ ∆ and a Kripke structure K = 〈V, v0,→
,V〉, let Bs→s′ = 〈P, S, S0,∆ − {s → s′},L,F〉 be the
transition excluding GBA for s, if K passes a test case t
strongly covering s→ s′ and K |= B, then, K 6|= Bs→s′ .

Proof: We will prove by contradiction. Suppose that K |=
Bs→s′ . Since K passes t, K has a trace τ such that V(τ) = t.
Since K |= Bs→s′ , t |= Bs→s′ . Let ρ be a successful run of
Bs→s′ induced by t, that is, t ` ρ. ρ is also a successful run of
B because by Lemma 5.1 Bs→s′ is a refinement of B. Since
ρ does not visit s → s′, t does not strongly covers s → s′,
which contradicts to the condition of the theorem. Therefore,
K 6|= Bs→s′ . 2

Definition 5.3 (Vacuous Transitions): Given a generalized
Büchi automaton B = 〈P, S, S0,∆,L,F〉 and a Kripke
structure K, a transition s→ s′ of B is vacuous with respect
to K if and only if K |= B implies K |= Bs→s′ , where
Bs→s′ = 〈P, S, S0,∆ − {s → s′},L,F〉 is the TE-GBA for
s→ s′.

Since Bs→s′ is a refinement of B, K 6|= B implies
K 6|= Bs→s′ . Therefore, Definition 5.3 essentially states that a
vacuous transition s→ s′ of a GBA B for a Kripke structure K
does not affect whether K satisfies B. That is, if we remove the
vacuous transition s→ s′ from B, the outcome of whether the
system K satisfies GBA B will stay the same. This observation

prompts us to introduce the notion of transition-coverage-
induced refinement: for a given system and a property in a
GBA, if a transition of the GBA is vacuous to the system, the
transition can be removed from the GBA, and the system still
satisfies this refinement of the original GBA.

Corollary 5.4: Given a generalized Büchi automaton B
and a Kripke structure K = 〈V, v0,→,V〉, s → s′ is not
vacuous with respect to K if and only if K |= B and there
exists a test t such that t strongly covers s→ s′ and K passes
t.

Proof: Note that K 6|= B implies K 6|= Bs→s′ since
L(Bs→s′) ⊆ L(B). By Definition 5.3, s → s′ is not vacuous
with respect to K if and only if K |= B and K 6|= Bs→s′ .
Therefore, we only need to show that given K |= B, K 6|=
Bs→s′ if and only if there exists a test t strongly covering
s→ s′ and K passes t.

(⇒) Since K |= B and K 6|= Bs→s′ , there must be a trace τ of
K such that (i) B has a successful run ρ such that V(τ) ` ρ,
and (ii) Bs→s′ does not have a successful run ρ′ such that
V(τ) ` ρ′. Since the TE-GBA Bs→s′ is obtained by removing
transition s→ s′ from B, it follows that B’s every successful
run ρ′′ such that V(τ) ` ρ′′ shall go through s→ s′, otherwise,
ρ′′ is also a successful run of Bs→s′ , which contradicts to the
condition (ii) for τ . Now let t = V(τ). By Definition 3.1, t
strongly covers s and K passes t.

(⇐) Since K passes t, K has a trace τ such that V(τ) = t.
Since t strongly covers s→ s′, we have (i) t |= B, and hence
B has a successful run ρ such that t ` ρ; and (ii) for every
successful run ρ′ of B such that t ` ρ′, ρ′ goes through s→ s′.
We will prove by contradiction that K 6|= Bs→s′ . Suppose that
K |= Bs→s′ . It follows that every trace of K shall be accepted
by Bs→s′ , and hence Bs→s′ has a successful run ρ′′ such that
V(τ) ` ρ′′. Note that Bs→s′ is obtained by removing s → s′

from B, ρ′′ is also a successful run of B but ρ′′ does not visit
s → s′. It follows that t cannot strongly cover s because B
has a successful run induced by t that does not visit s → s′.
We reach a contradiction. Therefore, K 6|= Bs→s′ . 2

Corollary 5.4 shows the relation between the strong tran-
sition coverage for a transition of a GBA and its non-
vacuousness. It shall be noted that testing alone cannot prove
the non-vacuousness of a transition of a GBA. This is because
the non-vacuousness of a transition s→ s′ of B for a system
K requires that s → s′ impacts in some way the outcome of
whether K satisfies B, that is, either K |= B and K 6|= Bs→s′ ,
or K 6|= B and K |= Bs→s′ . Since Bs→s′ is obtained by
removing s → s′ from B, K 6|= B implies K 6|= Bs→s′ . The
only possibility left is that K |= B and K 6|= Bs→s′ , but
testing alone may not conclusively prove that K satisfies B.
Nevertheless, lack of the strong coverage for transition s→ s′

indicates that s→ s′ is a vacuous transition for K. Therefore,
we can remove s→ s′ from B without affecting the outcome
of whether K satisfies B.

Algorithm 3 refines a GBA while generating a test suite
strongly covering the transitions of the new GBA. Algorithm
3 is a modification of Algorithm 2. The difference is line 7.
Instead of returning with a failed attempt in Algorithm 2 when
the full strong state coverage cannot be achieved, Algorithm 3

Algorithm 3 Transition Refinement(B = 〈P, S, S0,∆,L,F〉,
Km = 〈S, s0,→,V〉)
.
Require: B is a GBA, Km is a system model, and Km

satisfies B;
Ensure: Return a GBA as a refinement of B, and a test suite

ts that strongly covers all the transitions of the new GBA;
1: for every s→ s′ ∈ S do
2: Bs→s′ = 〈P, S, S0,∆− {s→ s′},L,F〉;
3: τ = MC isEmpty(Bs→s′ ,Km));
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: B = Bs→s′ ;
8: end if
9: end for

10: return 〈B, ts〉;

refines the input GBA by removing vacuous transitions. The
output will be a GBA refined by removing vacuous transitions
with respect to the model, and a test suite for the refined GBA.

VI. EXPERIMENT

To evaluate the effectiveness of our transition coverage
criteria, we compare them against other criteria using cross-
coverage measurement. We conduct the experiment on exam-
ples from a variety of fields. The first example is from software
engineering. It tests the criteria on a model of the general
Inter-ORB Protocol (GIOP), a key component of the Object
Management Group (OMG)’s Common Object Request Broker
Architecture (CORBA) specification [18]. The second example
is from computer networks. It tests the criteria on a model
of a sliding window protocol, which depicts the behavior of
the classic network protocol as in [21]. The third example
is from computer security. It tests the criteria on a model
for the Needham-Schroeder security protocol as described
in [22]. The last two examples are from operating systems.
They test the criteria on Lamport’s Bakery algorithm [23]
and Peterson’s algorithm [24] for mutual exclusion problem,
respectively. The properties we used in our study all model
the central requirements of the systems. For the GIOP model,
the property models the requirement on the behaviors of the
recipient agent during communication. The LTL property for
the sliding window checks the correctness of transmission
among multiple channels. The property for Needham-Shroeder
security protocol is a liveness property requiring that the
initiator can only send messages after the responder is up and
running. Finally, the properties for the two mutual exclusion
problem require the 3 critical requirements to hold: mutual
exclusion, progress, and bounded waiting.

Table I provides an overview of the models and properties,
showing the size of both the models and properties in terms
of the number of branches, clauses, states/transitions of the
underlying Büchi automata, atomic propositions in the proper-
ties, and definition-usage pairs. All of the information in Table
I are of relevance to the diversified profiles of test criteria we
used in the experiment for the comparison, in terms of the size

TABLE I. OVERVIEW OF THE MODELS AND PROPERTIES USED IN THE
EXPERIMENTS.

Models Branches Clauses States Transitions Atoms. D-U pairs
GIOP 77 77 3 9 4 256

Slid. Win. 24 31 4 11 4 83
Needham 41 50 3 9 3 120
Lamport’s 17 20 3 16 5 77
Peterson 5 8 3 16 5 30

of test suites generated.

In each set of our experiment, a test suite is generated
for each criterion (listed at the leftmost column in Table II).
We measure the coverage of the test suite under other criteria
(listed at the top rows in Table II). Branch coverage (BC) and
clause coverage (CC) are two variations of the logic expression
criteria [25] and among the most commonly-used structural
test criteria. Branch coverage criterion evaluates the number of
branches being covered, whereas the clause coverage criterion
examines the truth value of each clause within each branch.
We include a strong state coverage criterion (SC/strong) and a
weak state coverage criterion (SC/weak) for Büchi automaton,
defined in [1]. We also include a property-coverage criterion
(PC) for Linear Temporal Logic (LTL), defined in [12]. In
addition, we include the data-flow coverage criterion (DC)
defined in [26]. Finally, we compare the proposed strong
transition coverage criterion (TC/strong) and its weak variant
(TC/strong) with each other, as well as with other criteria.

In [27] we developed a uniform framework and tool to
compare the effectiveness of test criteria used with model-
checking-assisted test case generation. This experiment uses
an extension of the tool that also supports transition coverage
criteria proposed in this paper. We use GOAL [28] to perform
graph transformation required for building TE-GBAs and TM-
GBAs. We use SPIN [17] as the underlying model checker to
assist test case generation.

Table II shows the results of our experiment. Numbers
in a parenthesis represents the coverage measured by a test
criterion for a test suite generated for the same criterion.
A less-than perfect coverage in this case may indicate the
deficiency of a model and/or a requirement. For instance,
for the sliding window example, the test suite for the strong
transition coverage criterion may only reach 67% coverage due
to the existence of vacuous transitions in the specification.

The overall result indicates that the transition coverage
criteria in general have a more competent performance over
the others, especially when compared with traditional struc-
tural criteria such as branch, clause, and data-flow coverage
criteria. For instance, the test suite generated for the strong
transition coverage achieves full coverage over these criteria in
Lamport’s Bakery algorithm for mutual exclusion, whereas the
test suites generated for branch, clause, and data-flow coverage
only reach 33%, 56%, and 33%, respectively. Other three
property-based coverage criteria - strong and weak state cov-
erage criteria for Büchi automaton and the property-coverage
criterion - also exhibit a strong performance, albeit stop short
of those of transition coverage criteria.

The results also indicate that for the GIOP and sliding

TABLE II. CROSS-COVERAGE COMPARISON RESULTS

GIOP
BC CC SC/strong SC/weak TC/strong TC/weak PC DC

BC (100%) 100% 67% 67% 56% 56% 75% 100%
CC 100% (100%) 67% 67% 56% 56% 75% 100%
SC/strong 73% 73% (100%) 100% 100% 100% 75% 82%
SC/weak 77% 77% 100% (100%) 100% 100% 75% 82%
TC/strong 77% 77% 100% 100% (100%) 100% 75% 82%
TC/weak 77% 77% 100% 100% 100% (100%) 75% 82%
PC 73% 73% 100% 100% 77% 77% (75%) 78%
DC 71% 71% 100% 100% 77% 77% 75% (100%)

Sliding Window
BC CC SC/strong SC/weak TC/strong TC/weak PC DC

BC (100%) 93% 50% 75% 50% 67% 75% 61%
CC 100% (96%) 50% 75% 50% 67% 50% 51%
SC/strong 67% 81% (75%) 75% 42% 67% 75% 70%
SC/weak 67% 81% 75% (75%) 42% 67% 75% 70%
TC/strong 72% 87% 75% 75% (67%) 67% 75% 70%
TC/weak 72% 87% 75% 75% 67% (83%) 75% 83%
PC 72% 87% 75% 75% 67% 75% (75%) 61%
DC 100% 93% 75% 75% 42% 67% 75% (100%)

Needham Protocol
BC CC SC/strong SC/weak TC/strong TC/weak PC DC

BC (100%) 100% 67% 100% 77% 100% 67% 100%
CC 100% (100%) 67% 100% 77% 100% 67% 100%
SC/strong 47% 47% (100%) 100% 77% 77% 100% 41%
SC/weak 25% 25% 100% (100%) 67% 67% 100% 20%
TC/strong 51% 51% 100% 100% (77%) 100% 100% 44%
TC/weak 45% 45% 100% 100% 77% (100%) 100% 40%
PC 51% 51% 100% 100% 55% 55% (100%) 41%
DC 100% 100% 67% 100% 77% 100% 67% (100%)

Lamport’s Bakery
BC CC SC/strong SC/weak TC/strong TC/weak PC DC

BC (100%) 100% 33% 100% 33% 100% 60% 70%
CC 100% (100%) 67% 67% 56% 56% 75% 100%
SC/strong 100% 100% (100%) 100% 69% 100% 100% 100%
SC/weak 100% 100% 100% (100%) 69% 100% 100% 100%
TC/strong 100% 100% 100% 100% (88%) 100% 100% 100%
TC/weak 100% 100% 100% 100% 88% (100%) 100% 100%
PC 75% 70% 100% 100% 75% 100% (100%) 81%
DC 100% 100% 33% 100% 33% 100% 100% (100%)

Peterson
BC CC SC/strong SC/weak TC/strong TC/weak PC DC

BC (100%) 85% 67% 67% 56% 56% 60% 100%
CC 100% (100%) 67% 67% 56% 56% 75% 100%
SC/strong 100% 85% (100%) 100% 63% 100% 100% 100%
SC/weak 100% 85% 100% (100%) 63% 100% 100% 100%
TC/strong 100% 90% 100% 100% (88%) 100% 100% 100%
TC/weak 100% 90% 100% 100% 88% (100%) 100% 100%
PC 100% 100% 100% 100% 63% 100% (100%) 100%
DC 100% 85% 67% 67% 56% 56% 80% (100%)

window models, transition coverage criteria and the other
three property-based criteria are not able to achieve a perfect
coverage over the branches and data-flow paths. The reason
behind this is that the properties used in the experiment do
not fully cover all the functional aspects of these models.
For instance, in the GIOP example, the only property used
in the experiment specifies the requirement for the recipient’s
behavior when it is waiting for or receives a message. It does
not concern the other functions of the model. Therefore the test
suite generated for the property bypasses some code segments,
which leads to a less-than perfect structural coverage.

This observation suggests an important trait of property-
based coverage criteria, including the transition coverage cri-
teria proposed in this paper: the performance of these criteria
are largely influenced by the quality of a temporal requirement.
A well-defined requirement that touches more aspects of a

model may result in better coverage, whereas the deficiency
in the requirement can lead to a lower coverage on the system.
For the same reason, the results from property-based coverage
testing may be used to identify and correct the deficiency in the
specification and the system model. This potential benefit of
property-based coverage testing is capitalized by our transition-
coverage-induced property refinement in Section V.

Another point worth noting is the relation between the
transition coverage criteria and state coverage criteria. It is
straightforward to prove that a transition coverage criterion
subsumes its state coverage counterpart. If a transition s→ s′

is strongly (or, weakly) covered by a test case t, both s and
s′ have to be strongly (or, weakly) covered by t. Practically,
an automaton generally has more transitions than states, thus a
test suite generated for a transition coverage criterion is able to
cover more scenarios than the test suite generated for its state

counterpart. On the other hand, it is also more computationally
expensive to generate a test suite for a transition coverage
criterion than for its state coverage counterpart.

VII. CONCLUSIONS

We considered specification-based testing for linear tem-
poral properties expressed in generalized Büchi automata
(GBAs). We introduced two variants of transition coverage
metrics and criteria for measuring how well the transitions
of a specification in a GBA are covered during a test. The
immediate application of these two metrics and criteria is
to select test cases based on their relevancy to a GBA-
based specification. For this application we provided model-
checking-assisted algorithms to automate test case generation
for proposed coverage criteria. Our strategy, while bearing a
similarity to transition coverage of a FSM, is fundamentally
different in several aspects.

First of all, we focus on the properties, instead of the
systems. By doing so, we are able to examine the degree of
adherence between a system and its requirements. Secondly,
with the benefit of the power of both GBA and model checkers,
we can explore complicated behaviors of the system, hence
making the testing much more thoroughly. Last but not least,
this work extends our previous work on state coverage metrics
for Büchi automaton [1] and vacuity-based coverage metric
for LTL formulae [12]. Property-based metrics such as these
proposed in this paper also help identify the deficiency in
the requirement specification. We showed that the feedback
from model-checking-assisted test case generation for the
proposed transition coverage criteria might also be used to
refine the requirement specification. We defined the notion
of vacuous transitions, and the removal of these vacuous
transitions refines the requirement specification. The result is a
refined requirement that more closely describes the behaviors
of a system. We also developed a model-checking-assisted
approach to formalize and automate the process of requirement
refinement. We tested the proposed transition coverage metrics
and criteria on a variety of applications, and the results showed
their effectiveness.

This research represents an important step in our effort
to harness the synergy between model checking and testing
for making tests more efficient and effective. For future work,
we will continue to explore syntactical as well as semantic
coverage metrics for specification-based testing with formal
temporal properties.

REFERENCES

[1] L. Tan, “State Coverage Metrics for Property Coverage Testing with
Büchi Automata,” in 5th International Conference on Tests and Proofs,
ser. Lecture Notes in Computer Science. Zurich, Switzerland: Springer
Verlag, 2011.

[2] S.-. Committee, “Software Considerations in Airborne Systems and
Equipment Certification,” Radio Technical Commission for Aeronautics,
Tech. Rep., 1992.

[3] M. Heimdahl, S. Rayadurgam, and W. Visser, “Specification centered
testing,” in Proceedings of the Second International Workshop on
Automated Program Analysis, Testing and Verification, 2001.

[4] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[5] R. Gerth, D. Peled, M. Vardi, and P. Wolper, “Simple on-the-fly
automatic verification of linear temporal logic,” in PSTV’95. Chapman
and Hall, 1995, pp. 3–18.

[6] D. Giannakopoulou and F. Lerda, “From States to Transitions: Improv-
ing Translation of LTL Formulae to Büchi Automata,” in Lecture Notes
In Computer Science; Vol. 2529. Springer-Verlag, 2002.

[7] G. J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, May 1997.

[8] P. Ammann and P. E. Black, “A specification-based coverage metric to
evaluate test sets,” in The 4th IEEE International Symposium on High-
Assurance Systems Engineering, ser. HASE ’99. Washington, DC,
USA: IEEE Computer Society, 1999.

[9] G. Fraser and A. Gargantini, “An Evaluation of Specification Based Test
Generation Techniques Using Model Checkers,” in 2009 Testing: Aca-
demic and Industrial Conference - Practice and Research Techniques.
Ieee, 2009.

[10] A. Calvagna and A. Gargantini, “A Logic-Based Approach to Combi-
natorial Testing with Constraints,” in 2nd International conference on
Tests and Proofs, 2008.

[11] H. S. Hong, I. Lee, O. Sokolsky, and H. Ural, “A temporal logic based
theory of test coverage and generation,” in TACAS’02, ser. LNCS, vol.
2280, 2002, pp. 327–341.

[12] L. Tan, O. Sokolsky, and I. Lee, “Specification-based Testing with
Linear Temporal Logic,” in IRI’04. IEEE society, 2004, pp. 493–498.

[13] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 4, no. 2, Feb. 2003.

[14] M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller, “Coverage
metrics for requirements-based testing,” in Proceedings of the 2006
international symposium on Software testing and analysis, ser. ISSTA
’06. New York, NY, USA: ACM, 2006.

[15] A. Rajan, “Coverage metrics for requirements-based testing,” Ph.D.
dissertation, University of Minnesota, Minneapolis, MN, USA, 2009.

[16] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi, “Test selection based on finite state models,” IEEE Trans.
Softw. Eng., vol. 17, no. 6, Jun. 1991.

[17] G. J. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng.,
vol. 23, May 1997.

[18] M. Kamel and S. Leue, “Formalization and validation of the General
Inter-ORB Protocol (GIOP) using PROMELA and SPIN,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 2, no. 4,
Mar. 2000.

[19] M. Vardi, “Automata-theoretic model checking revisited,” in 8th Verifi-
cation, Model Checking, and Abstract Interpretation. Springer, 2007.

[20] M. Michel, Complementation is more difficult with automata on infinite
words. Paris, France: CNET, 1988.

[21] Andrew S. Tanenbaum, Computer Networks, 5th ed. Prentice Hall,
2010.

[22] P. Maggi and R. Sisto, “Using spin to verify security properties of
cryptographic protocols,” in Proceedings of the 9th International SPIN
Workshop on Model Checking of Software. London, UK, UK: Springer-
Verlag, 2002.

[23] L. Lamport, “A new solution of dijkstra’s concurrent programming
problem,” Commun. ACM, vol. 17, August 1974.

[24] G. L. Peterson, “Myths about the mutual exclusion problem,” Inf.
Process. Lett., vol. 12, no. 3, 1981.

[25] P. C. Jorgensen, Software Testing: A Craftsman’s Approach, 1st ed.
Boca Raton, FL, USA: CRC Press, Inc., 1995.

[26] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE Trans. Softw. Eng., vol. 11, April 1985.

[27] B. Zeng and L. Tan, “Test Criteria for Model-Checking-Assisted Test
Case Generation: A Computational Study,” in International Conference
on Information Reuse and Integration. IEEE, 2012.

[28] Y.-k. Tsay, Y.-f. Chen, M.-h. Tsai, K.-n. Wu, and W.-c. Chan, “GOAL :
A Graphical Tool for Manipulating B uchi Automata and Temporal
Formulae,” in 13th Tools and Algorithms for the Construction and
Analysis of Systems, vol. 02. Springer, 2007.

