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Abstract. Büchi automaton is one of the most commonly used for-
malisms for specifying and reasoning linear temporal properties. It is
instrumental for developing formal verification algorithms, i.e., model
checkers, for linear temporal logics. Until now Büchi automaton-based
specification is mainly used in automated verification in form of linear
temporal logic model checking. In this paper, we develop test criteria
and techniques that are essential for testing upon specifications in Büchi
automata. These criteria measure the semantic relevancy of test cases
to a requirement in Büchi automaton. We define “weak” and “strong”
variants of the criteria based on coverage on the transitions of the Büchi
automaton. These criteria can be used to measure the quality of exist-
ing test cases with respect to requirements in Büchi automaton, and
to drive test case generation. We develop automated test-case genera-
tion algorithms that use an off-the-shelf model checker to generate test
cases under these test criteria. In our extended computational study we
deploy two methodologies to measure and demostrate the effectiveness
of our approach. First, we measure the cross-coverage of the transition
coverage criteria against other existing test criteria. Second, we use a
fault-injection technique to measure the sensitivity of our approach. In
both cases, our approach shows a better performance compared with
existing test criteria and a good sensitivity in detecting errors systemat-
ically injected to a system. Furthermore, the proposed criteria uncover
not only the deficiency of a test suite with respect to a linear tempo-
ral requirement, but also that of the requirement itself. We propose an
algorithm to refine the requirement using the feedback from test-case
generation.

1 Introduction

Verification and validation (V&V) is an essential activity in software engineering.
With our society increasingly replying on software, from embedded software
in automobile, to mobile apps, and anything between, the expectation for the
quality of software and the cost of V&V activities are also soaring. Heimdahl
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et. al [12] estimated that V&V activities take up around 50%-70% of resource
in the development of high-dependable software. To meet the expectation for
the quality and to reduce the cost, an organization often develops its own V&V
strategy which deploys a mixture of V&V techniques. Two most commonly used
V&V techniques are testing and formal verification.

Testing is a classical V&V technique, and its origin may be dated back to the
onset of modern engineering activities. Testing checks the behaviors of a system
under controlled input stimuli, also known as test cases. Over years, testing has
been incorporated into various software quality standards. For example, DO-178
[5] is the software quality standard for safety-critical avionic software. A key
component of DO-178 is a set of required structural testing criteria, including
the MC/DC criterion [3]. Among the strengths of testing are its scalability and
versatility: generally it scales well for a large system, and it may be used for
testing a high-level model of a system, such as in the case of model-driven testing
[1], and the system implementation. The major drawback of testing is that it can
only show the presence, but not absence of bugs, as famously noted by Dijkstra
[6].

Formal verification, on the other hand, refers to an array of techniques that
build a mathematically rigid proof for the correctness of a system design with
respect to its specifications. One of the most commonly used formal verification
techniques is model checking [4], in which a specification of a system is encoded
in a temporal logic. The strenghes and weaknesses of formal verification are
often complemental to those of testing: formal verification may be used to es-
tablish the correctness of the correctness of a system design on a mathematically
sound ground. Nevertheless, it is limited on its scalability and it is generally only
applicable to a design, not an implementation of a system.

Our research aims to harness the synergy of these two mostly commonly used
and yet complementary techniques, testing and formal verification, to build more
efficient and effective V&V processes. With the rising popularity of formal ver-
ification techniques, particularly, model checking, requirements are increasingly
specified in a formalism that facilitates formal verification. An emerging re-
search theme is how testing may take advantage of formal requirements initially
intended for model checking. In this paper we address the issue in the context
of specification-based testing with Büchi automaton. As a form of ω-automata,
Büchi automaton accepts ω-language, an extension of regular languages with in-
finite words. Büchi automaton has been an instrumental tool in linear temporal
logic model checking [9,11]. It has been used for specifying linear-temporal prop-
erties directly. Büchi automaton also serves as an unified intermediate format
into which a requirement in other linear temporal logics such as Linear Tem-
poral Logic may be translated, before the requirement is processed by a model
checker.

We develop a set of techniques to meet the challenges of specification-based
testing with Büchi automata. The core of our approach is a set of test criteria
that measure how relevant a test case with respect to a requirement encoded
in a Büchi automaton. Specifically our coverage criteria require a test suite to
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cover transitions of a Büchi automaton. We define “weak” and “strong” variants
of these criteria, which define different degree of relevancy, to reflect the non-
deterministic nature of a Büchi automaton.

To improve the efficiency of specification-based testing, we develop a model-
checking-assisted algorithm for generating test cases under the proposed criteria.
Utilizes the counterexample generation capability provided by an existing linear-
temporal model checker, the algorithm automates the test-case generation for a
system and its requirement in Büchi automaton. Our test-case generation algo-
rithm works as a two-step process: first, it synthesizes a property for each tran-
sition of the Büchi automaton. Also known as a “trap” property, the property
characterizes a test case covering the transition of the Büchi automaton. Next,
the algorithm uses the counter-example mechanism of an off-the-shelf model
checker to generate the test case satisfying the “trap” property. In our exper-
iment, we build a model-checking-assisted test-case generator using the model
checker SPIN [13].

The proposed test criteria and metrics not only measure the quality of a
test suite in terms of its relevancy to a requirement in Büchi automaton, they
may also be used to identify the deficiency of the requirement itself. Besides
insufficient test suite, incorrect or imprecise requirements may cause lack of
transition coverage for a Büchi automaton. By utilizing the feedback from our
model-checking-assisted test generation algorithm, we are able to identify the
deficiency of a requirement. By extending the model-checking-assisted test gen-
eration algorithm, we develop an algorithm to refine the requirement in Büchi
automaton.

To better assess the performance of our approach, we carry an extended
computational study using two different methodologies. The first method is to
measure the cross coverage between our test criteria and several popular existing
criteria, including data-flow criteria and branch coverage criterion, as well as
property-coverage criteria that we proposed before. The cross coverage measures
how much a test suite generated under one criterion covers another criterion; the
second method is to measure the effectiveness of different test criteria in catching
errors systematically introduced (i.e. “injected”) to a system. In both cases, our
approach shows a better cross coverage and an improved effectiveness in catching
bugs, especially when considering the cost involving in performing tests.

The rest of the paper is organized as follows: Section 2 prepares the nota-
tions used in the paper; Section 3 introduces both variants of transition coverage
metrics and criteria for Büchi automata; Section 4 presents the model-checking-
assisted test case generation algorithms for the transition coverage criteria; Sec-
tion 5 discusses the requirement refinement using the feedback from the model-
checking-assisted test case generation; Section 6 discusses the result of our com-
putational study on the performance comparison between the new criteria and
other existing test criteria, using cross-coverage comparison and fault-injection-
based sensitivity analysis; and finally Section 7 concludes the paper.

Related Works An important component of our approach is a model-checking-
assisted algorithm that utilizes the counterexample mechanism of a model checker
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to generate test cases. A central question in model-checking-assisted test gen-
eration is how to specify the test objectives as temporal properties acceptable
by a model checker. Fraser and Gargantini [7] showed that traditional structural
coverage criteria such as MC/DC Coverage could be expressed in Computational
Tree Logic (CTL), which were accepted by a CTL model checker such as NuSMV
for test generation. Hong etal. also used CTL to translate the data flow criteria
[14]. Calvagna and Gargantini encoded several combinatorial testing criteria in
Linear Temporal Logic (LTL) for the model checker SAL for similar purposes
[2]. These previous works applied the model-checking-assisted on existing testing
criteria. In contrast, we studied test generation with temporal logic requirements
in [23]. Inspired by the notion of vacuity in [18], we proposed a coverage metric
measuring how well a test covers a LTL requirement. The vacuity-based coverage
criterion requires a test suite to check the relevancy of each subformula of a LTL
property to a system. Whalen and Rajan et al [26,20] described a similar strat-
egy, presenting a Unique-First-Cause (UFC) coverage derived from the MC/DC
criterion. They define the satisfying paths over LTL temporal operators, setting
up a rigorous notion of requirements coverage over the execution traces. Fraser
and Gargantini conducted a comparison of these techniques in [7].

The key element of our approach is test criteria based on the coverage for
Büchi automaton. Fujiwara et al. [8] proposed the partial W-method for test
case selection. They evaluate the adequacy of a test suite with respect to the
coverage for a finite state machine. Besides the obvious difference between Büchi
automaton and finite state machine, the automaton in our approach is used to
specify the requirement of a system, whereas the automaton used by Fujiwara
et al. is the model of a system.

This study extends our previous work on specification-based testing with
temporal logics [23]. In [23] we developed the coverage criteria for Linear Tem-
poral logic (LTL) based the notion of (non-)vacuousness. One of its features and
also a drawback is that the criteria depend heavily on the syntactical structures
of a LTL formulae, which makes the approach susceptible to syntactical variance
of formula, even though the formula may have the exactly same semantics. For
instance, the LTL formula f0 : G(brake ⇒ F stop) ∧ (brake ⇒ F stop) is se-
mantically equivalent to f1 : G(brake⇒ F stop). Yet for vacuity-based coverage
metric, the coverage of a test case for f0 always subsumes its coverage for f1.
Our automaton-based coverage criteria are proposed to overcome this problem
of syntactical dependency. Büchi automaton captures the semantics of a linear-
temporal requirement, and methods such as automaton minimazation may be
used for removing the syntactical difference between automata of the same se-
mantics. In [22] we also investigated state coverage criteria, and conducted a
computational study for them [28]. In the paper we focus on the transition of
a Büchi automaton. We show that that the new criteria out-perform the state-
coverage criteria, both in theory and in our experiments. We also perform an
extended computational study that now includes the sensitivity analysis using
fault injection technique.



Testing with Büchi Automata 5

2 Preliminaries

2.1 Kripke Structures, Traces, and Tests

We use Kripke structures to model the systems. A Kripke structure is a finite
transition system in which each state is labeled with a set of atomic propositions.
Atomic propositions represent primitive properties held at a state semantically.
Definition 1 defines Kripke structures formally.

Definition 1 (Kripke Structures). Given a set of atomic proposition A, a
Kripke structure is a tuple 〈V, v0,→,V〉, where V is the set of states, v0 ∈ V is
the start state, →⊆ V ×V is the transition relation, and V : V → 2A labels each
state with a set of atomic propositions.

We write v → v′ in lieu of 〈v, v′〉 ∈→. We let a, b, · · · range over A, and
denote A¬ for the set of negated atomic propositions. Together, P = A ∪ A¬
defines the set of literals. We let l1, l2, · · · and L1, L2, · · · range over P and 2P ,
respectively.

The following notations are used to represent sequences: let β = v0v1 · · · be
a sequence, we denote β[i] = vi for i-th element of β, β[i, j] for the subsequence
vi · · · vj , and β(i) = vi · · · for the i-th suffix of β. A trace τ of the Kripke structure
〈V, v0,→,V〉 is defined as a maximal sequence of states starting with v0 and re-
specting the transition relation→, i.e., τ [0] = v0 and τ [i−1]→ τ [i] for every i <
|τ |. We also extend the labeling function V to traces: V(τ) = V(τ [0])V(τ [1]) · · ·.

Definition 2 (Lasso-Shaped Sequences). A sequence τ is lasso-shaped if it
has the form α(β)ω, where α and β are finite sequences. |β| is the repetition
factor of τ . The length of τ is a tuple 〈|α|, |β|〉.

Definition 3 (Test and Test Suite). A test, or a test case, is a word on 2A,
where A is a set of atomic propositions. A test suite ts is a finite set of test
cases. A Kripke structure K = 〈V, v0,→,V〉 passes a test case t if K has a trace
τ such that V(τ) = t. K passes a test suite ts if and only if it passes every test
in ts.

2.2 Generalized Büchi Automata

Definition 4. A generalized Büchi automaton is a tuple 〈S, S0, ∆,F〉, in which
S is a set of states, S0 ⊆ S is the set of start states, ∆ ⊆ S × S is a set of
transitions, and the acceptance condition F ⊆ 2S is a set of sets of states.

We write s → s′ in lieu of 〈s, s′〉 ∈ ∆. A generalized Büchi automaton is
an ω-automaton, which can accept the infinite version of regular languages. A
run of a generalized Büchi automaton B = 〈S, S0, ∆,F〉 is an infinite sequence
ρ = s0s1 · · · such that s0 ∈ S0 and si → si+1 for every i ≥ 0. We denote inf(ρ)
for a set of states that appear for infinite times on ρ. A successful run of B is a
run of B such that for every F ∈ F , inf(ρ) ∩ F 6= ∅.
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In this work, we extend Definition 4 using state labeling approach in [9] with
one modification: we label the state with a set of literals, instead of with a set
of sets of atomic propositions in [9]. A set of literals is a succinct representation
of a set of sets of atomic propositions: let L be a set of literals labeling state
s, then semantically s is labeled with a set of sets of atomic propositions Λ(L),
where Λ(L) = {A ⊆ A | (A ⊇ (L ∩ A)) ∧ (A ∩ (L ∩ A¬) = ∅)}, that is, every
set of atomic propositions in Λ(L) must contain all the atomic propositions in
L but none of its negated atomic propositions. In the rest of the paper, we use
Definition 5 for (labeled) generalized Büchi automata (GBA).

Definition 5. A labeled generalized Büchi automaton is a tuple 〈P, S, S0, ∆,L,F〉,
in which 〈S, S0, ∆,F〉 is a generalized Büchi automaton, P is a set of literals,
and the label function L : S → 2P maps each state to a set of literals.

A GBA B = 〈A∪A¬, S, S0, ∆,L,F〉 accepts infinite words over the alphabet
2A. Let α be a word on 2A, B has a run ρ induced by α, written as α ` ρ, if and
only if for every i < |α|, α[i] ∈ Λ(L(ρ[i])). B accepts α, written as α |= B if and
only if B has a successful run ρ such that α ` ρ.

GBAs are of special interests to the model checking community. Because
a GBA is an ω-automaton, it can be used to describe temporal properties of a
finite-state reactive system, whose executions are infinite words of an ω-language.
Formally, a GBA accepts a Kripke structure K = 〈V, v0,→,V〉, denoted as
K |= B, if for every trace τ of K, V(τ) |= B. Efficient Büchi-automaton-based al-
gorithms have been developed for linear temporal model checking. The process of
linear temporal model checking generally consists of translating the negation of
a linear temporal logic property φ to a GBA B¬φ, and then checking the empti-
ness of the product of B¬φ and K. If the product automaton is not empty, then
a model checker usually produces an accepting trace of the product automaton,
which serves as a counterexample to K |= φ.

3 Transition Coverage Metrics and Criteria

Definition 6 (Covered Transitions). Given a generalized Büchi automaton
B = 〈P, S, S0, ∆,L,F〉, a test t weakly covers a transition s → s′ if B has a
successful run ρ such that t ` ρ and ss′ is a substring of ρ. A test t strongly
covers a transition s→ s′ if t |= B, and for B’s every successful run ρ such that
t ` ρ, ss′ is a substring of ρ.

Since a generalized Büchi automaton B allows non-deterministic transitions,
a test may induce more than one successful runs of B. We define a weakly covered
transition as a transition appearing on some successful runs induced by t, and
a strongly covered transition as a weakly covered transition appearing on every
successful run induced by t. It shall be noted that by requiring t satisfying B, the
strong coverage requires that t induces at least one successful run γ of B. Since
a strongly covered transition s→ s′ appears on every successful run induced by
t, it shall also appear on γ. Hence, by Definition 6 a strongly covered transition
must also be a weakly covered one.
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Definition 7 (Weak Transition Coverage Metrics and Criteria). Given
a generalized Büchi automaton B = 〈P, S, S0, ∆,L,F〉, let δ ⊆ ∆ be a set of
transitions, the weak transition coverage metric for a test suite T on δ is defined

as |δ
′|
|δ| , where δ′ = {s→ s′ | (s→ s′) ∈ δ ∧ ∃t ∈ T.(t weakly covers (s→ s′))}. T

weakly covers δ if and only if δ′ = δ.

Definition 8 (Strong Transition Coverage Metrics and Criteria). Given
a generalized Büchi automaton B = 〈P, S, S0, ∆,L,F〉, let δ ⊆ ∆ be a set of
transitions, the strong transition coverage metric for a test suite T on δ is defined

as |δ
′|
|δ| , where δ′ = {s→ s′ | (s→ s′) ∈ δ ∧∃t ∈ T.(t strongly covers (s→ s′)}. T

strongly covers δ if and only if δ′ = δ.

Theorem 1 shows that the strong transition coverage criterion subsumes the
weak transition coverage criterion.

Theorem 1. Given a GBA B = 〈P, S, S0, ∆,L,F〉, let δ ⊆ ∆ be a set of tran-
sitions, if a test suite T strongly covers δ, then T also weakly covers δ.

Proof. Since T strongly covers δ, by Definition 8, for every (s → s′) ∈ δ, there
exists a t such that (i) t satisfies B; and (ii) for every B’s successful run ρ such
that t ` ρ, ss′ is a substring of ρ. By (i) and (ii), there exists at least one ρ such
that t ` ρ and ss′ is a substring of ρ. Therefore, by Definition 8, T also weakly
covers S. 2

It shall be noted that covering transitions of a GBA is very different from
similar practice on a Finite State Machine (FSM). In this paper, we do use
Kripke structure, which is essentially a FSM, to model a system. Meanwhile,
the criteria defined above focus on covering a property in the form of Büchi
automata. By shifting the focus towards the property, we are able to measure
the semantic adherence of a system with respect to the property, instead of
simply going through the structural elements of the system. By examining the
GBA, we are able to reason and test subtle temporal behaviors of the system
that cannot be captured by a FSM.

4 Model-Checking-Assisted Test Generation for
Transition Coverage

To improve the efficiency of test case generation, we develop model-checking-
assisted test case generation algorithms based on off-the-shelf Büchi-automaton-
based model checkers. Model checking with Büchi automaton is a well-studied
subject (cf. [9]). Efficient algorithms and tools, such as SPIN [13], have been
developed over the years. In general a Büchiautomaton-based model checker
verifies a system K against a property φ in two stages: first, a Büchi automaton
B¬φ is constructed for the negated property ¬φ; second, the checker generate
the product of B¬φ and K, and then run an emptiness check on the product
automaton. If the result is positive, then K 6|= B¬φ, that is, K satisfies φ. It
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shall be noted that although we use SPIN in an implementation of our test case
generation algorithms, our test-case generation algorithms are not tied to any
specific model checker. We designate a routine MC isEmpty in the algorithms
as an abstraction of the core emptiness checking routine of a Büchi-automaton-
based model checker. MC isEmpty(B,K) checks the emptiness of the product
of a Büchi automaton B and a Kripke structure K. B accepts K if the product
is empty; otherwise, MC isEmpty(B,K) returns a trace α of K that satisfies
B. α may be mapped to a word t = Vα, which specifies a test case. Throughout
the process, B, as an input to the MC isEmpty(B,K), is a Bc̈uhi automaton
that encodes a test objective for a test criterion, and the trace that returns from
the emptiness check may be used to construct a test case for that test objective.

A central question in model-checking-assisted test case generation is how to
encode test objectives as temporal properties acceptable to a model checker. In
our case, these temporal properties, referred to as “trap” properties, characterize
test cases covering the transitions of a Büchi automaton. We develop a method
based on graphic transformation, to derive “trap” properties from a Büchi au-
tomaton under transition coverage criteria. For weak transition coverage, a trap
property covering a transition s→ s′ is a transition marking general Büchi au-
tomaton (TM-GBA) for s→ s′ (Definition 9). For strong transition coverage, a
trap property covering the transition s → s′ is the negation of a transition ex-
cluding general Büchi automaton (TE-GBA) for s→ s′ (Definition 10). Figure 1
shows the workflow of model-checking-assisted test case generation under both
transition coverage criteria for Büchi automaton.

GBA transition 
coverage criteria

Specifications given 
in GBA: 𝐵

Trap properties 
in TE-GBA: 𝐵𝑠→𝑠′

Negated 
TE-GBA:
𝐵𝑠→𝑠′

Negation

Model 
checker

Weak coverage 
test suite

Linear 
counterexamples

System model 

Graph 
transformation

Trap properties 
in TM-GBA: 
𝐵(𝑠 → 𝑠′)

TM-GBA: 
𝐵(𝑠 → 𝑠′)

Strong 
coverage test 

suite

Repeat for every 
transition: 𝑠 → 𝑠′ in 𝐵

Linear 
counterexamples

Fig. 1. The workflow of model-checking-assisted test case generation under transition
coverage criteria for generalized Büchi automaton (GBA).
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Definition 9 (TM-GBA). Let B = 〈P, S, S0, ∆,L,F〉 be a GBA, B’s tran-
sition marking general Büchi automaton B(s → s′) has form of B(s → s′) =
〈P, S × {0, 1}, S0 × {0}, ∆′,L′,F ′〉, where,

– ∆′ =
(⋃

(s→s′)∈∆{〈s, 0〉 → 〈s′, 0〉, 〈s, 1〉 → 〈s′, 1〉}
)
∪ {〈s, 0〉 → 〈s′, 1〉};

– For every s ∈ S, L′((s, 0)) = L′((s, 1)) = L(s);
– F ′ =

⋃
F∈F{F × {1}}.

For a Büchi automaton B and a transition s → s′ of B, the corresponding
TM-GBA B(s→ s′) contains two copies of the original B, with additional indices
attached to the states of these copies with 0 and 1, respectively. The copies are
linked by the transition 〈s, 0〉 → 〈s′, 1〉. The start states of B remain in the
first copy, while only the second copy has all the acceptance states. Therefore,
a successful run of B(s → s′) must travel from a start state in the first copy
to some acceptance states in the second copy, and the only way to do so is to
go through the bridging transition 〈s, 0〉 → 〈s′, 1〉. By the construction of the
TM-GBA B(s → s′), a trace τ can be accepted by B(s → s′) if and only if τ
can be accepted by B and it weakly covers s→ s′.

As an example, consider the LTL property G(¬t ⇒ ((¬p U t) ∨ G¬p)).
The property specifies a temporal requirement for the GIOP model, the general
Inter-Object Request Brokers (ORB) Protocol [17], which we used in our com-
putational experiments. In this formula, the atomic proposition t stands for a
request being sent in the model, and p stands for an agent receiving a response.
The formula states that an agent would not receive any response until a request
has been made. Figure 2 is a generalized Büchi automaton for the LTL prop-
erty. Figure 3 shows a TM-GBA covering the transition s0 → s1 for the GBA in
Figure 2.

¬p ¬t

t

¬p ¬t

¬p

t

0S

2S1S

¬p ¬t

Fig. 2. A general Büchi automaton representing the LTL property G(¬t⇒ ((¬pU t)∨
G¬p)).



10 Testing with Büchi Automata

¬p ¬t

t

¬p ¬t

¬p

t

¬p ¬t ¬p ¬t

t

¬p ¬t

¬p

t

¬p ¬t

>< 0,0S

>< 0,1S

>< 1,2S

¬p ¬t

>< 1,1S

>< 0,2S

>< 1,0S

Fig. 3. A transition marking general Büchi automaton covering the transition s0 → s1
for the GBA in Figure 2.

Algorithm 1 TestGen WTC(B = 〈P, S, S0, ∆,L,F〉, Km = 〈S, s0,→,V〉)
Require: B is GBA and Km is a system model
Ensure: Return the test suite ts that weakly covers all the transitions of B and Km

passes ts. Return ∅ if such a test suite is not found;
1: for every s→ s′ ∈ ∆ do
2: Construct a TM-GBA B(s→ s′) from B that marks the transition s→ s′;
3: τ = MC isEmpty(B(s→ s′),Km);
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: return ∅;
8: end if
9: end for

10: return ts;

Algorithm 1 generates a test suite that weakly covers all transitions of a
GBA B. For every transition s→ s′ of B, the algorithm builds a corresponding
TM-GBA B(s → s′). The algorithm then invokes MC isEmpty on B(s → s′)
and a system model Km, which will check the emptiness of the product of the
inputs. If the product is not empty, MC isEmpty returns a successful run of
the product of B(s→ s′) and the system model Km. A test case related to this
successful run is then added to the test suite. Theorem 2 shows the correctness
of Algorithm 1.

Theorem 2. If the test suite ts returned by Algorithm 1 is not empty, then (i)
Km passes ts and (ii) ts weakly covers all the transitions of B.

Proof. (i) For each t ∈ ts, there is a related transition s→ s′ and MC isEmpty
(B(s → s′),Km) returns a successful run of the production of B(s → s′) and



Testing with Büchi Automata 11

Km such that V(τ) = t. Since any successful run of the production of B(s→ s′)
and Km shall also be a trace of Km, τ is also a trace of Km. Therefore, Km shall
pass t. That is, Km passes every test case in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related transition s → s′ and
a successful run τ of the production of B(s → s′) and Km such that V(τ) = t.
We will show that t weakly covers s→ s′. By Definition 7, we need to show that
there is a successful τ ′ of B such that τ ′ takes the transition s→ s′. We obtain
the τ ′ by taking the projection of τ on the states of B as follows: since τ is a run
of the production of the TM-GBA B(s → s′) and Kripke structure Km, each
state on τ has the form of 〈〈s′, i〉, v〉, where s′ is a state of B, i ∈ {0, 1} is an
index number marking the states in the TM-GBA B(s→ s′), and v is a state of
Km. We project the state 〈〈s′, i〉, v〉 to the state s′ on B. Let τ ′ be the resulting
sequence. Clearly τ ′ is also a successful run of B because, by Definition 9, each
transition in B(s → s′) is mapped to a transition in B and each acceptance
state in B(s → s′) is mapped to an acceptance state in B. In addition, τ has
to go through 〈s, 0〉 → 〈s′, 1〉 because, by Definition 9, acceptance states of a
TM-GBA are indexed by 1, whereas start states are indexed by 0, and hence
the only way that a run of B(s → s′) is successful is that it has to go through
〈s, 0〉 → 〈s′, 1〉. Therefore, τ ′ has to take s→ s′, and we proved (ii). 2

¬p ¬t

t

¬p ¬t

¬p

t

0S

2S1S

Fig. 4. A transition excluding general Büchi automaton covering the transition s0 → s1
for the GBA in Figure 2.

For strong transition coverage criterion, a trap property is a transition ex-
cluding generalized Büchi automaton (TE-GBA). For a Büchi automaton B and
a transition s→ s′ of B, the TE-GBA Bs→s′ is constructed by simply removing
s→ s′ from B. In this case, for every trace τ accepted by B, τ does not satisfy
Bs→s′ , i.e., τ |= Bs→s′ , the compliment Büchi automaton of TE-GBA if and only
if τ strongly covers s → s′. Figure 4 shows a TE-GBA covering the transition
s0 → s1 for the GBA in Figure 2.
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Algorithm 2 TestGen STC(B = 〈P, S, S0, ∆,L,F〉, Km = 〈S, s0,→,V〉)
Require: B is a GBA, Km is a system model, and Km satisfies B;
Ensure: Return a test suite ts such that ts strongly covers all the transitions of B

and Km passes ts. Return ∅ if such a test suite is not found;
1: for every (s→ s′) ∈ ∆ do
2: Bs→s′ = 〈P, S, S0,∆− {s→ s′},L,F〉;
3: τ = MC isEmpty(Bs→s′ ,Km));
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: return ∅;
8: end if
9: end for

10: return ts;

Definition 10 (TE-GBA). Let B = 〈P, S, S0, ∆,L,F〉 be a GBA, a tran-
sition excluding generalized Büchi automaton for s ∈ S is a GBA Bs→s′ =
〈P, S, S0, ∆− {s→ s′},L,F〉.

Algorithm 2 generates a test suite that strongly covers the transitions of
a given GBA B. Similarly to the weak coverage, the algorithm builds a TE-
GBAfor every transition of B. The algorithm then calls the emptiness checking
routine MC isEmpty on the negation of the TE-GBA and the system model.
If the product of Bs→s′ and the system model Km is not empty, the function
MC isEmpty returns a successful run of the product of Bs→s′ and the system
model Km. Since this run is also a trace of Km, it is then mapped to a test
case consisting of a series of atomic propositions, and added to the resulting test
suite. Theorem 3 shows the correctness of Algorithm 2.

Theorem 3. If the test suite ts returned by Algorithm 2 is not empty, then (i)
Km passes ts; and (ii) ts strongly covers all the transitions of B that can be
strongly covered.

Proof. (i) For each t ∈ ts, there is a related transition s→ s′ and MC isEmpty
((Bs→s′),Km) returns a successful run of the product of Bs→s′ and Km such
that V(τ) = t. Since any successful run of the production of Bs→s′ and Km is
also a successful run on Km, and Km shall pass t = V(τ). Therefore, Km passes
every test case in ts.

(ii) As shown in (i), for each t ∈ ts, there is a related transition s → s′ and
a successful run τ of the production of Bs→s′ and Km such that V(τ) = t. We
will show that t strongly covers the transition s→ s′.

First, since τ is also a trace of Km and Km satisfies B by the precondition
of Algorithm 2, τ |= B.

Next, we will prove by contradiction that every successful run of B that is
induced by the test case t shall take the transition s→ s′ at least once. Suppose
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not, and let ρ be a successful run of B that is induced by t and ρ does not take
s→ s′. It follows that ρ shall also be a successful run of Bs→s′ , because the only
difference between Bs→s′ and B is that Bs→s′ does not have transition s → s′.
Therefore, t shall also be accepted by Bs→s′ . This contradicts to the fact that t
is accepted by Bs→s′ , which is a complement of Bs→s′ , and thus should have no
common words in their languages. If t can be accepted by both automaton, then
t ∈ L(Bs→s′) ∩ L(Bs→s′) 6= ∅. Therefore, every successful run of B that accepts
t shall visit s→ s′ at least once. 2

Complexity Analysis A GBA B can be translated to a Büchi automaton (BA)
by indexing acceptance states. The resulting BA has the size O(|F| · |B|), where
|F| is the number of acceptance state sets in B, and |B| is the size of B. The
emptiness checking for a BA can be done in linear time (cf. [25]). Therefore, gen-
erating a test case weakly covering a transition can be done in O(|K| · |F| · |B|),
where |K| is the size of the model. Generating a test suite weakly covering
all the transitions in B can be done in O(|K| · |F| · |B|2). Algorithm 2 starts
with the construction of a TE-GBA for a transition, which can be done in lin-
ear time. It then negates the TE-GBA. Michel [19] provided a lower bound of
2O(nlogn) for negating a BA of size n. Therefore, Algorithm 2 takes at least
O(|K| · 2O(|F|·|B|log(|F|·|B|)) to generate a test case strongly covering a transition
and at least O(|K|·|B|·2O(|F|·|B|log(|F|·|B|)) = O(|K|·2O(|F|·|B|log(|F|·|B|)) to gen-
erate a test suite strongly covering all the transitions of a GBA. Generating test
cases under strong transition coverage is much more computationally expensive
than doing so under weak transiton overage, and the reason can be traced back
to Definition 6: strongly covering a transition s → s′ requires all the successful
runs induced by a test to visit s → s′ at least once, whereas weakly covering s
only requires a single successful run visiting s→ s′.

5 Transition-Coverage-Induced Requirement Refinement

Our coverage criteria and metrics not only measure the quality of a test suite
in terms of its relevancy to a requirement in Büchi automaton, they may also
be used to identify the deficiency of the requirement itself. Insufficient coverage
may be caused by a problem in a system design, but it may also be due to
the deficiency of the requirement itself. For example, the requirement may be
imprecise and/or too general with respect to the system design. The information
from our model-checking-assisted test case generation algorithm may be used to
refine the requirement.

In this work we consider the refinement with respect to language inclusion.
Formally we define B′ v B if and only if L(B′) ⊆ L(B), that is, B′ is a refinement
of B if the language accepted by B′ is a subset of the language accepted by
B. By Definition 3, a test accepted by B′ will also be accepted by B. In our
transition-coverage-induced requirement refinement, the feedback from model-
checking-assisted test case generation is used to refine a temporal property B in
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Fig. 5. The workflow of strong transition coverage criterion based GBA refinement.

Büchi automaton. The resulting property B′ will be more semantically restricted
than the original property, that is, B′ v B.

Lemma 1. Given a GBA B = 〈P, S, S0, ∆,L,F〉 with a transition s→ s′ ∈ ∆,
let Bs→s′ = 〈P, S, S0, ∆ − {s → s′},L,F〉 be the transition excluding GBA for
s→ s′, then Bs→s′ v B.

Proof. By Definition 10 the TE-GBA Bs→s′ misses transition s→ s′. It follows
that the successful runs of Bs→s′ are those that do not visit s→ s′ in the original
GBA. Therefore, L(Bs→s′) ⊆ L(B) and hence Bs→s′ v B. 2

Theorem 4. Given a GBA B = 〈P, S, S0, ∆,L,F〉 with a transition s→ s′ ∈ ∆
and a Kripke structure K = 〈V, v0,→,V〉, let Bs→s′ = 〈P, S, S0, ∆ − {s →
s′},L,F〉 be the transition excluding GBA for s, if K passes a test case t strongly
covering s→ s′ and K |= B, then, K 6|= Bs→s′ .

Proof. We will prove by contradiction. Suppose that K |= Bs→s′ . Since K passes
t, K has a trace τ such that V(τ) = t. Since K |= Bs→s′ , t |= Bs→s′ . Let ρ be
a successful run of Bs→s′ induced by t, that is, t ` ρ. ρ is also a successful run
of B because by Lemma 1 Bs→s′ is a refinement of B. Since ρ does not visit
s→ s′, t does not strongly covers s→ s′, which contradicts to the condition of
the theorem. Therefore, K 6|= Bs→s′ . 2

Definition 11 (Vacuous Transitions). Given a generalized Büchi automaton
B = 〈P, S, S0, ∆,L,F〉 and a Kripke structure K, a transition s → s′ of B is



Testing with Büchi Automata 15

vacuous with respect to K if and only if K |= B implies K |= Bs→s′ , where
Bs→s′ = 〈P, S, S0, ∆− {s→ s′},L,F〉 is the TE-GBA for s→ s′.

Since Bs→s′ is a refinement of B, K 6|= B implies K 6|= Bs→s′ . Therefore,
Definition 11 essentially states that a vacuous transition s→ s′ of a GBA B for
a Kripke structure K does not affect whether K satisfies B. That is, if we remove
the vacuous transition s → s′ from B, the outcome of whether the system K
satisfies GBA B will stay the same. This observation prompts us to introduce
the notion of transition-coverage-induced refinement: for a given system and
a property in a GBA, if a transition of the GBA is vacuous to the system,
the transition can be removed from the GBA, and the system still satisfies this
refinement of the original GBA.

Corollary 1. Given a generalized Büchi automaton B and a Kripke structure
K = 〈V, v0,→,V〉, s→ s′ is not vacuous with respect to K if and only if K |= B
and there exists a test t such that t strongly covers s→ s′ and K passes t.

Proof. Note that K 6|= B implies K 6|= Bs→s′ since L(Bs→s′) ⊆ L(B). By
Definition 11, s→ s′ is not vacuous with respect to K if and only if K |= B and
K 6|= Bs→s′ . Therefore, we only need to show that given K |= B, K 6|= Bs→s′ if
and only if there exists a test t strongly covering s→ s′ and K passes t.

(⇒) Since K |= B and K 6|= Bs→s′ , there must be a trace τ of K such that
(i) B has a successful run ρ such that V(τ) ` ρ, and (ii) Bs→s′ does not have a
successful run ρ′ such that V(τ) ` ρ′. Since the TE-GBA Bs→s′ is obtained by
removing transition s → s′ from B, it follows that B’s every successful run ρ′′

such that V(τ) ` ρ′′ shall go through s → s′, otherwise, ρ′′ is also a successful
run of Bs→s′ , which contradicts to the condition (ii) for τ . Now let t = V(τ). By
Definition 6, t strongly covers s and K passes t.

(⇐) Since K passes t, K has a trace τ such that V(τ) = t. Since t strongly covers
s → s′, we have (i) t |= B, and hence B has a successful run ρ such that t ` ρ;
and (ii) for every successful run ρ′ of B such that t ` ρ′, ρ′ goes through s→ s′.
We will prove by contradiction that K 6|= Bs→s′ . Suppose that K |= Bs→s′ . It
follows that every trace of K shall be accepted by Bs→s′ , and hence Bs→s′ has a
successful run ρ′′ such that V(τ) ` ρ′′. Note that Bs→s′ is obtained by removing
s → s′ from B, ρ′′ is also a successful run of B but ρ′′ does not visit s → s′. It
follows that t cannot strongly cover s because B has a successful run induced by
t that does not visit s → s′. We reach a contradiction. Therefore, K 6|= Bs→s′ .
2

Corollary 1 shows the relation between the strong transition coverage for a
transition of a GBA and its non-vacuousness. It shall be noted that testing alone
cannot prove the non-vacuousness of a transition of a GBA. This is because the
non-vacuousness of a transition s→ s′ of B for a system K requires that s→ s′

impacts in some way the outcome of whether K satisfies B, in other words, either
K |= B and K 6|= Bs→s′ , or K 6|= B and K |= Bs→s′ . Since Bs→s′ is obtained by
removing s→ s′ from B, K 6|= B implies K 6|= Bs→s′ . The only possibility left is
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Algorithm 3 Transition Refinement(B = 〈P, S, S0, ∆,L,F〉, Km = 〈S, s0,→
,V〉)
.

Require: B is a GBA, Km is a system model, and Km satisfies B;
Ensure: Return a GBA as a refinement of B, and a test suite ts that strongly covers

all the transitions of the new GBA;
1: for every s→ s′ ∈ S do
2: Bs→s′ = 〈P, S, S0,∆− {s→ s′},L,F〉;
3: τ = MC isEmpty(Bs→s′ ,Km));
4: if |τ | 6= 0 then
5: ts = ts ∪ {V(τ)}
6: else
7: B = Bs→s′ ;
8: end if
9: end for

10: return 〈B, ts〉;

that K |= B and K 6|= Bs→s′ , but testing alone may not be able to conclusively
prove that K satisfies B. Nevertheless, lack of the strong coverage for transition
s → s′ indicates that s → s′ is a vacuous transition for K. Therefore, we can
remove s→ s′ from B without affecting the outcome of whether K satisfies B.

Algorithm 3 refines a GBA while generating a test suite strongly covering
the transitions of the new GBA. Algorithm 3 is a modification of Algorithm 2
that differs on line 7. Instead of returning with a failed attempt in Algorithm 2
when the full strong state coverage cannot be achieved, Algorithm 3 refines the
input GBA by removing vacuous transitions immediately. The output will be a
GBA refined and without vacuous transitions with respect to the model, as well
as a test suite for the refined GBA. Figure 5 depicts the workflow of the GBA
refinement process.

6 Experiment

6.1 Experiment Settings

To obtain a close-to-reality measurement of the performance of our coverage
criteria, we purposely select the subjects of our experiments from three different
fields. The first subject used in our experiment is a model of the general Inter-
ORB Protocol (GIOP) from the area of software engineering. GIOP is a key
component of the Object Management Group (OMG)’s Common Object Request
Broker Architecture (CORBA) specification [17]. The second model is a model of
the Needham-Schroeder public key protocol from the area of computer security.
The Needham-Schroeder public key protocol intends to authenticate two parties
involving a communication channel. Finally, our third subject is a model of a
fuel system from the area of control system. The model is translated by Sabina
Joseph [16] from a classic Simulink [21] fuel system demo model.
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Each model has a set of linear temporal properties that specify behavior
requirement for the underlying system. For the GIOP model, the property models
the requirement on the behaviors of the recipient agent during communication.
The LTL property for the Needham-Shroeder public-key protocol is a liveness
property requiring that the initiator can only send messages after the responder
is up and running. Finally, the properties for the fuel system checks that under
abnormal conditions, the system’s fault tolerant mechanism is able to function
properly without a disastrous failure.

Table 1 provides an overview of the models and properties, showing the
size of both the models and properties in terms of the number of branches,
states/transitions of the LTL property equivalent Büchi automata, and atomic
propositions in the properties. All of the information in Table 1 are of relevance
to the diversified profiles of test criteria we used in the experiments for the
comparison, in terms of the size of test suites generated.

Table 1. Overview of the models and properties used in the experiments.

Models Branches States Transitions Atoms.

GIOP 70 2 6 4

Needham 43 2 6 3

Fuel 55 4 21 4

We select several traditional as well as specification-based testing criteria as
basis for performance comparison. Based on the coverage for outcomes of a logic
expression (c.f. [15]), Branch coverage (BC) is one of the most commonly-used
structural test criteria. We include a strong state coverage criterion (SC/strong)
and a weak state coverage criterion (SC/weak) for Büchi automaton[22]. We also
include a property-coverage criterion (PC) for Linear Temporal Logic (LTL) [23].
In our experiment, the performance of these criteria, and two transition coverage
criteria (TC/stong and TC/weak) are compared with each other.

6.2 Methodologies

To assess the effectiveness of our transition-coverage criteria, we carry out an
extended computational study using two different methodologies: cross-coverage
analysis and fault-injection-based sensitivity analysis.

Cross-coverage analysis the cross-coverage measures how well a test suite
generated for a test criterion covers another test criterion. The cross coverage is
used as an indicator for the semantics strength of a test criterion with respect
to others. In [28] we developed a uniform framework and tool to compare the
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effectiveness of test criteria used with model-checking-assisted test case genera-
tion. This experiment uses an extension of the tool that also supports transition
coverage criteria proposed in this paper. We use GOAL [24] to perform graph
transformation required for building TE-GBAs and TM-GBAs, and adopt SPIN
[13] as the underlying model checker to assist test case generation. For the other
criteria, we generate trap properties in LTL for BC/PC, and state coverage crite-
ria based trap GBAs for SC/strong and SC/weak. Interested readers can refer to
[28,29] for the details of the tool that we developed for cross-coverage comparison
between test criteria.

Fault-injection-based sensitivity analysis Fault-inject technique (c.f. [27])
is a classic techniques used in software engineering for evaluating the sensitive-
ness of a quality assurance tool towards injected faults. The sensitivity analysis
checks the effectiveness of a test suite under a given criterion. The effectiveness
is measured by the test suite’s ability of catching faults systematically intro-
duced to a system. A higher number of faults being caught indicates that the
underlying test criterion is more sensitive in catching faults. To inject faults to
a model, we mutate relational operators (e.g. changing ≥ to <), one operator at
a time. We then run on a faulty model a test suite generated for a test criterion.
If the execution of the faulty model under a test case is different from that of
the original model, then the injected fault is caught by the test case, that is, the
underlying test criterion is sensitive enough to catch the fault.

6.3 Experiment Results and Analysis

Both cross coverage analysis and sensitivity analysis require the test suites gen-
erated for test criteria being involved. Table 2 shows the measurement of the
generated test cases. For the branch coverage (BC), we first generate tests specif-
ically for every single branch in the model. Based on the coverage information,
we select two more groups of test cases. By using an Integer Linear Program-
ming solver, we obtain an optimal test suite that consists of the least number
of test cases and covers the maximum number of branches that can be covered
(BC(Opt.)). This test suite represents the theoretical lower bound of the num-
ber of test cases needed for covering the system model under BC. The other test
suite (BC(Grd.)) is selected using a greedy algorithm. For instance, if the first
test case covers branches No. 2 and 3, then test cases for the second and third
branch will no longer be generated, and so on. The greedy algorithm represents
the common practice of selecting a near-optimal test suite, to reduce the cost of
test execution. “TS Size” in Table 2 indicates the number of test cases each test
suite has, and “Max./Min./Avg. Length” specifies the length of the lasso-shaped
test cases, i.e., the number of steps in the counterexample trace produced by the
model checker. Finally, “Gen. Time” and “Exec. Time” represent the time it
took to generate the traces and execute the test cases, respectively.

It shall be noted that for practical purpose, we enforce a time limit for the
model checking process. This is due to the fact that SPIN suffers from “state
space explosion problem” as an explicit state model checker [10]. SPIN may
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run out of resources (time and/or space) before reaching a conclusive result. .
Subsequently, we expect three possible outcomes of the model checking process:
1) returning with a counterexample trace, 2) returning with a answer that there
is no counterexample or 3) terminating without returning value. For the third
case, we count the time limit towards the generation time, which explains why
some entries in Table 2 is significantly longer than the other criteria.

Table 2. Test suites overview

Model GIOP
BC BC(Opt.) BC(Grd.) PC SC/strong SC/weak TC/strong TC/weak

TS Size 54 4 10 3 2 2 6 6

Max. Length 779 779 779 601 602 602 602 602

Min. Length 34 605 49 280 602 572 602 572

Avg. Length 405 664 534 494 602 587 602 588

Gen. Time 1087 27 51 332 0.02 3.7 0.06 13

Exec. Time 0.586 0.05 0.1 0.06 0.03 0.05 0.11 0.13

Model Needham Protocol
BC BC(Opt.) BC(Grd.) PC SC/strong SC/weak TC/strong TC/weak

TS Size 37 7 13 3 2 2 6 6

Max. Length 70 70 62 34 43 42 43 42

Min. Length 9 22 22 33 41 41 41 41

Avg. Length 43 51 48 34 42 42 42 41

Gen. Time 360 0.065 0.122 0.03 0.02 0.02 0.06 0.06

Exec. Time 0.335 0.063 0.118 0.03 0.02 0.02 0.06 0.06

Model Fuel System
BC BC(Opt.) BC(Grd.) PC SC/strong SC/weak TC/strong TC/weak

TS Size 45 1 8 3 2 2 6 7

Max. Length 52904 52904 9261 8594 8482 538 8482 5320

Min. Length 27 52904 29 130 1530 254 174 192

Avg. Length 3985 52904 1975 4239 5006 396 4661 2003

Gen. Time 602 0.76 0.155 0.178 600 600 780 720

Exec. Time 751 150 0.375 0.379 0.24 0.02 0.61 0.3

Table 3 shows the results from the cross-coverage analysis. The number in
each cell indicates the coverage of test cases generated for the criterion on the row
w.r.t. the criterion on the column. That is, we first generate the test suites for
the criterion on a row, and then measure the coverage of the test suite on the test
criterion on a column. Numbers on diagonal cells are marked with parentheses.
They represent the coverage of a test suite generated for the same criterion.
A less-than perfect coverage on these diagonal cells may be caused by any of
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the following reasons: 1) it indicates potential deficiency of a model and/or a
requirement, or 2) the model checker could not terminate within the time limit.
For instance, for the fuel system model, the test suite for the strong transition
coverage criterion may only reach 29% coverage upon all the transitions. This
is due to both the existence of vacuous transitions in the specification, as well
as the model checking process not returning with an conclusive answer, i.e. the
second and third outcome of the process as explained above.

Table 3. Cross-coverage comparison results

GIOP
BC PC SC/strong SC/weak TC/strong TC/weak

BC (77%) 75% 100% 100% 100% 100%

PC 66% (75%) 100% 100% 100% 100%

SC/strong 66% 75% (100%) 100% 100% 100%

SC/weak 66% 75% 100% (100%) 100% 100%

TC/strong 66% 75% 100% 100% (100%) 100%

TC/weak 66% 75% 100% 100% 100% (100%)

Needham Protocol
BC PC SC/strong SC/weak TC/strong TC/weak

BC (86%) 100% 100% 100% 100% 100%

PC 47% (100%) 100% 100% 100% 100%

SC/strong 47% 100% (100%) 100% 100% 100%

SC/weak 28% 0% 0% (100%) 0% 100%

TC/strong 47% 100% 100% 100% (100%) 100%

TC/weak 40% 0% 0% 100% 0% (100%)

Fuel System
BC PC SC/strong SC/weak TC/strong TC/weak

BC (82%) 25% 75% 50% 86% 33%

PC 78% (100%) 50% 50% 29% 33%

SC/strong 75% 100% (50%) 50% 29% 33%

SC/weak 64% 25% 75% (50%) 86% 33%

TC/strong 75% 100% 100% 50% (29%) 33%

TC/weak 67% 25% 75% 50% 86% (33%)

The proposed transition coverage criteria, especially, its strong variance,
place second in the cross coverage analysis, only after the branch coverage crite-
rion. It shall be noted that the branch coverage criterion is a white-box testing
criterion. The criterion forces test cases for every branch of a system, and hence
the test suite for the branch coverage criterion is in general larger than those for
transition coverage criteria, as evident in 2. A smaller test suite, coupled with a
good performance in cross-coverage analysis, could make the transition coverage



Testing with Büchi Automata 21

criteria a competitive alternative to a white-box coverage criterion such as the
branch coverage criterion.

It is also noted that the test suites for transition coverage criteria do not
achieve the full branch coverage. The is mainly due to the fact that we only use
one temporal property for each model, which do not fully cover all the functional
aspects of the models. For instance, the property for the GIOP model specifies
the requirement for the recipient’s behavior when it is waiting for or receives a
message, and does not concern other functions. Therefore, the test cases bypass
some code segments and lead to a less-than perfect branch coverage.

This leads to another important observation for property-based coverage cri-
teria, including the transition coverage criteria proposed in this paper: the per-
formance of these criteria are largely influenced by the quality of a temporal
requirement. A well-defined requirement that touches more aspects of a model
may result in better coverage, whereas the deficiency in the requirement can
lead to a lower coverage on the system. We capitalized this observation via our
transition-coverage-induced property refinement in Section 5. Alternatively, a
more complete set of temporal properties that address multiple aspects of a
model could also greatly improve the performance on this part.

Finally, the results also establish that transition coverage criteria out-perform
the other property-based coverage criteria, albeit slightly. From a superficial
point of view, there are usually more transitions than states in a GBA, or the
atomic propositions in the equivalent LTL formula. Thus, a transition coverage
based test suite can potentially address more scenarios. We can also see a decent
correlation between the state and transition coverage based test suites, for both
the strong and weak variants. This proves that we are able to further remove the
syntax dependency that still exists for the property coverage criterion in [23],
therefore come one step closer to the semantic essence of the temporal proper-
ties. It is also straightforward that a transition coverage criterion subsumes its
state coverage counterpart, since covering a transition means covering both the
source and the target states. Last but not least, with the fact that transition
coverage criteria are tailored towards the subtle differences among transitions,
the refinement process is able to yield a finer tuned refined GBA that the state
coverage criteria are unable to produce.

Table 4 shows the results of fault-injection-based sensitivity analysis. Faults
are introduced by relational operators mutation. The total count of “faults”, i.e.,
the number of relational operators available in the models that can be mutated,
are specified in the parenthesis along side the name of the model. We then list out
the percentage of the faults that can be detected by the test suites we generated
towards the different test coverage criteria. We also define a Sensitivity Adjusted
Cost (SAC) as follows,

SAC =
(Total Length of the Test Suite)

(Percentage of Detected Faults)
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Table 4. Injected faults detection results

Total Faults GIOP (49) Needham Protocol (24) Fuel System (191)

Detection Rate SAC Detection Rate SAC Detection Rate SAC

BC 76% 28776 92% 1729 66% 118355

BC(Opt.) 76% 3495 79% 452 N/A N/A

BC(Grd.) 76% 7026 88% 709 66% 23939

PC 67% 2212 75% 136 76% 16733

SC/strong 67% 1797 83% 101 69% 14510

SC/weak 67% 1752 25% 336 54% 1467

TC/strong 67% 5391 83% 304 69% 40530

TC/weak 67% 5266 38% 647 58% 24174

Note that the cost of executing a test suite is in general proportional to
the size of the test suite. The SAC essentially means the adjusted cost of test
(execution) w.r.t. the sensitivity of the underlying test criterion.

In all three models, the property-based criteria, including transition coverage
criteria, are able to detect a good portion of the injected faults. Because of the
code-based nature of branch coverage, it is to be expected that BC would have
the best detection rate. However, in the case of the fuel system model, some of
the test cases are too long to be executable (with the largest length over 50000,
see Table 2). As a result, both the full and greedy test suites can only detect
two thirds of the faults, while other criteria based test suites catch up, or even
surpass it with fewer and shorter test cases. Judging by SAC, we can see that
PC and SC tend to have lower cost, while TC would be slightly more expensive
due to there being more test cases.

Also, in the case of the Needham-Schroeder protocol, we can see that the
strong variants of both SC and TC out-perform the weak counterparts rather
significantly, which can be explained by the less demanding nature of weak cri-
teria producing shorter test cases, thus are less effective in finding the faults.
Furthermore, once again we can see the correlation between SC and TC, as well
as TC/weak slightly out-performs SC/weak, which is comparable to our previous
analysis on the cross-coverage experiments.

7 Conclusions

We considered specification-based testing for linear temporal properties expressed
in generalized Büchi automata (GBAs). We introduced two variants of test met-
rics and criteria based on the test-case coverage for transitions of a Büchi automa-
ton. The test metrics measure the relevancy of test cases with respect to a Büchi
automaton, and the test criteria may be used for selecting test cases for testing
a system with respect to the Büchi automaton. We developed a model-checking-
assisted algorithm to automate test case generation for proposed criteria.
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Although specification-based testing with automata has been studied before
(c.f.[8]), the subject of these previous works is a system design modeled in fi-
nite automaton. In comparison, we focus on high-level requirement encoded in
Büchi automaton. While these previous works studied testing techniques that
checked the conformance of an implementation to a system design, we explored
technique that examined the conformance of a system design with respect to
its requirements. Moreover, with the power of Büchi automata, we are able to
study specification-based testing for linear temporal properties that model com-
plex and infinite linear-time behaviors of an reactive system.

The transition-coverage criteria not only measure the quality of a test suite
in terms of its relevancy to a requirement in Büchi automaton, they may also be
used to identify the deficiency of the requirement itself. We defined the notion of
vacuous transitions. By removing these vacuous transitions, we obtain a refined
requirement that more closely describes the behaviors of a system. Using the
feedback from model-checking-assisted test case generation, we developed an
algorithm to identify vacuous transitions and to refine the requirement.

To assess the effectiveness of the proposed approach, we carried out an ex-
tended computational study using two different methodologies: the cross cover-
age analysis measures how well a test suite generated for a test criterion covers
another test criterion. The cross coverage is used as an indicator for the semantic
strength of a test criterion with respect to others; the sensitivity analysis checks
the effectiveness of a test suite for a given criterion, in terms of the ability of the
test suite catching faults systematically introduced to a system. In both cases,
our transition-coverage-based criteria show a better performance over existing
test criteria. A particular strength of our criteria is that the size of a test suite
selected by our criteria is relatively small. The small size of these test cases not
only reduces the cost of test execution, it also helps testing activity centeralized
on system requirement.
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