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Abstract

Yield mapping visualizes yield rate per geological distri-
bution. It is frequently used as a baseline metric to mea-
sure yield efficiency in precision farming. A major chal-
lenge in mapping yield for specialty crops is how to col-
lect accurate yield data without incurring substantial over-
head to a farming operation. We design a yield efficiency
analysis system that uses a cloud-based computing plat-
form to acquire and analyze yield data. By reusing labor
data collected by a cloud-based labor monitoring system
that we developed earlier [1], our system calculates yield
data from labor data, and computes yield map in real time
and without the overhead for data acquisition. A distinctive
feature of our approach is the introduction of a customiz-
able yield distribution function that quantifies the probabil-
ity of geographic distribution of fruits weighted at a Labor
Monitoring Device. Practitioners may define yield distri-
bution functions based on operational characteristics of an
orchard, enabling our system adaptive for a variety of or-
chards with different harvesting operations and canopy ar-
chitecture. Using a multi-tenancy software architecture, our
system can support multiple orchards concurrently with im-
proved scalability and data privacy. Our system has been
deployed and tested on Amazon Web Services (AWS).

1 Introduction

Specialty crops, defined by USDA as “fruits and vegeta-
bles, tree nuts, dried fruits, horticulture, and nursery crops
(including floriculture)” [2], represent a multi-billion dollar
industry in the United States alone. Taking Cherry as an
example, the United States exports more than $206 million
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worth of Cherry in 2006-7. With an increasingly larger pop-
ulation worldwide with more purchasing power and health
consciousness, the demand for special crops will likely con-
tinue to grow in the foreseeable future. A constant theme
in special crop industry is how to improve yield efficiency
in an orchard. An important metric to measure yield ef-
ficiency is yield mapping, which maps yield rate with its
geological distribution. Yield map provides practitioners an
intuitive tool to assess the yield distribution in an orchard.
When overlaid with other datasets, such as terrain and sen-
sor data, an augmented yield map visualizes the relation be-
tween yield and these datasets.

A major bottleneck to map yield for specialty crop is
to acquire accurate yield data at a reasonable cost. Un-
like commodity crops such as wheat and corn, for whom
yield data may be collected using GPS-equipped machine
harvesters, most of specialty crops still reply on manual
harvesting. Using existing technology, measuring and geo-
tagging yield in a manual harvesting operation requires ad-
ditional equipment and extra steps, making it unpractical to
collect yield data via manual harvesting. Because of this
difficulty, researchers have been experimenting a variety of
techniques to estimate yield distribution. These techniques
include satellite and airborne imagery [3, 4], machine vi-
sion [5], and thermal imaging [6]. Nevertheless, these tech-
niques require expertise and often costly equipment, which
them unpractical for field use. Besides the concerns on the
cost, these techniques are indirect measurement of yield dis-
tribution. What is needed is an accurate and low-cost yield-
mapping method for specialty crop.

We develop a novel cloud-based yield-mapping ap-
proach that acquires yield data directly from harvesting op-
erations via data reuse. Using a patent-pending technology,
we previously developed a labor monitoring system (LMS)
that analyzed labor data collected by purposely designed
Labor Monitoring Devices (LMDs) [1]. Our yield-mapping
approach derives yield data from the labor data collected
by LMDs, and uses the yield data for visualizing yield ef-
ficiency. By reusing the labor data otherwise already col-
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lected for the purpose of labor monitoring, our approach
obtains yield data without additional cost. We implemented
our approach on top of a cloud-based labor monitoring sys-
tem [1]. The yield mapping function reuses labor data at
the level of cloud computing. Our approach does not re-
quire additional hardware other than enhancing an existing
LMD with an off-the-shelf GPS unit, nor it incurs substan-
tial overhead to a harvesting operation.

Figure 1 shows the architecture design of our yield map-
ping system. The process starts with collecting labor data
using the Labor Monitoring system (LMS) developed by
our team [1]. Using a patent-pending technology, the LMS
collects harvesting data from the field via LMDs. By ex-
tending a LMD with a GPS unit, we augment the harvest-
ing labor data with its geological location information. The
LMD sends the geo-tagged harvesting labor data to a data
acquisition server. The data is pre-processed and stored in
the database for use in a variety of data-processing func-
tions, including the real-time labor monitoring [1], and yield
mapping described in this paper. The data processing server
relates the geo-located harvest data to yield distribution in
the orchard. Many factors, such as orchard layout and
trees’ canopy architecture, may alter the temporal and spa-
tial patterns of a harvesting operation. A distinctive feature
of our approach is the introduction of a yield distribution
function that quantifies the probability of geographic dis-
tribution of fruits weighted at a LMD location. A grower
may define his/her own yield distribution function, to re-
flect the temporal and spatial patterns of his/her harvest-
ing operation. Once the geo-tagged harvesting data is pro-
cessed and translated to yield distribution, our visualization
server overlays it with other data sets, for example, the ter-
rain data from Google earth, to help users visualize the rela-
tion between yield and these data sets. Growers may access
yield maps through our cloud-based web server, from a web
browser. The entire server platform, including a data acqui-
sition server, a data processing server, a databases server, a
data visualization server, and a web server, is deployed on a
cloud computing platform (Amazon Web Services). Our la-
bor monitoring and yield mapping system deploys a multi-
tenancy software architecture, which enables us to serve
multiple orchards concurrently with improved data privacy
and security.

The rest of the paper is organized as follows: Section 2
discusses the method of deriving yield data from the labor
data collected by the labor monitoring system [1]; Section
3 discusses the yield mapping with customizable yield dis-
tribution functions; Section 4 discusses the multi-tenancy
software architecture of our system, which improves scala-
bility and data privacy on a cloud-computing platform; Sec-
tion 5 discusses our implementation and cloud deployment;
and finally Section 6 concludes the paper.

2 Data Aquisition via Harvest Labor Moni-
toring

Figure 2. A variant of Labor Monitoring Device
on a dolly [1].

Our cloud-based yield efficiency analysis system is built
on the top of a novel labor monitoring system (LMS) [1].
It extracts yield data from labor activity data collected by
the LMS. The LMS comprises a cloud-based data analaysis
platform and purposely designed Labor Monitoring Devices
(LMD) in the field. A typical workflow in the LMS is as
follows: first, a picker registers with the LMS, and he/she is
assigned with a personal identification device (PID). During
harvesting, the picker picks fruits and put them in a basket
as usual. The picker then comes to a LMD, and put the bas-
ket on a digital scale integrated with the LMD. The picker
also presents to the LMD his PID. The LMD then sends
to the data acquisition server a record bearing the weight
of fruits, the identification of PID, and the identification of
LMD. Using a patent pending technology [7], the LMS can
accurately accrue the labor for the worker, even with com-
plex many-to-many employment relations.

The design of a LMD is often application-specific. Prac-
titioners may choose a LMD design that fits best into their
operations. We developed the LMS so that it can work with
a variety of LMDs. We defined a communication protocol
between a LMD and the LMS. The LMS can work with any
LMD, as long as it conforms to our communication proto-
col. During our field tests in Cherry orchards, we used radio
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Figure 1. Architecture design of a Labor Monitoring-Based Yield Mapping system

Figure 3. Upright Fruiting Offshoot (UFO)
canopy architecture [8]

frequency identification devices (RFID) as Personal Identi-
fication Devices. RFID may be in a variety of forms such
as a wristband or a tag. A LMD designed for cherry har-
vesting typically consists of: (i) a digital scale; (ii) a radio
frequency identification (RFID) reader; and (iii) a compu-
tational unit (CU) with a wireless transceiver. A personal
identification device in this case is a RFID. Figure 2 shows
a LMD used in our field test, which has the components in-
stalled on a dolly for portability. To reuse the labor data for
analyzing yield efficiency, we need to know the geological
location where the labor data is registered at a LMD. To ob-
tain the geo-tagged labor data, we enhance a LMD with an
off-the-shelf GPS.

3 Mapping yield using Labor Monitoring
Data

An important measurement of efficiency of an orchard
is the yield of its end product, that is, fruits, nuts, and/or
other specialty crops produced in the orchard. Growers
concern not only the total amount of yield, but also how
it is distributed within the orchard. An important tool to

measure and illustrate yield distribution is yield mapping.
A yield map associates geographical data with the weight
of the fruit being harvested, and visualizes the association
in a visual format. One common format is a geographi-
cal map with colors representing the distribution of yield.
When overlaid with other datasets (e.g. soil nitrogen con-
tent, irrigation, weather data, fertilizer usage, etc), a yield
map provides imporant visual clue that may help uncover
the relations between the yield and these datasets. In ad-
dition to show the spatial distribution of yield, a yield map
may also be overlaid with historical data to show the tem-
poral variation of yield.

Because of the practical importance of yield mapping,
various methods for producing yield maps have been stud-
ied (cf. [9]). Nevertheless, yield mapping for specialty
crops remains to be challenging. In the United States, har-
vesting commodity crops such as corn and wheat is auto-
mated, and the yield of these crops may be measured di-
rectly by GPS-equipped mechanical harvesters. In compari-
son, specialty crops such as Cherry still rely on manual har-
vesting. Existing yield-mapping approaches for specialty
crops often use indirect measurement such as remote sen-
soring, which incurs additional cost to growers [10]. Com-
pared with these existing approaches, our LMS-based ap-
proach reuses labor data otherwise already collected for la-
bor monitoring purpose, and computes yield maps from the
labor data without incurring additional cost. Unlike exist-
ing methods that use sensoring and imagery technology to
estimate yield, our approach uses the labor data which is
a direct measurement of yield being harvested. This also
improves the accuracy of yield mapping.

Our approach starts with collecting yield data and its dis-
tribution in an orchard. Section 2 describes how the har-
vest data is collected and augmented with a GPS-equipped
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(a) A cherry orchard with a traditional architecture (b) A cherry orchard with the UFO architecture

Figure 4. Yield distribution functions (YDF) for orchards with (a) a traditional canopy architecture;
and (b) the UFO architecture.

LMD. As shown in Figure 1, the geo-tagged harvest data
is sent to a data acquisition server, which pre-processes the
data and store it to databases. Labor data is stored as pick-
ing records 〈w,mlat,mlong, ts〉, where w is the weight of
fruits being picked, 〈mlat,mlong〉 are the latitude and lon-
gitude of the LMD m when the fruits are being weighted,
and ts is the time stamp. Each picking record is the result
of a weighting event, that is, a picker weights his basket at
a LMD. The pre-processing performed by the data acquisi-
tion server removes the erroneous inputs and noises in the
data, for instance, data records with 0 weight, which may be
caused by a picker presenting his/her RFID to LMD without
weighting a basket of picked fruit.

Picking records stored in the databases are used as the
baseline data points for yield mapping. In our system, a
user can specify a time range I and a field F for which a
yield map is drawn. The data processing server (Figure 1)
retrieves the set of picking recordsD whose time stamp and
the geological locations fall into the time range and the field
selected by the user as below,

D = {〈w,mlat,mlong, ts〉 | ts ∈ I ∧ 〈mlat,mlong〉 ∈ F}
(1)

3.1 Yield Distribution Functions

Picking records store the quantity of fruits weighted at
LMDs, and they are tagged with the locations of the LMDs
when fruits are weighted. To compute a yield map, we
need to relate the fruits weighted at a LMD to the places
where they are picked. Normally it would require addi-

tional instruments and extra steps to precisely trace fruits
back to the exact place where they are picked. The cost
of these instruments and the overhead of the extra steps
would make it intractable to track fruits precisely to where
they are picked. To solve this problem, we use a statis-
tic method to estimate the geological distribution of fruits
weighted at a LMD. We introduce a yield distribution func-
tion that quantifies the probability of geological distribu-
tion of fruits weighted at a LMD. A yield distribution func-
tion is essentially a 2-dimension probability density func-
tion f(plat, plong,mlat,mlong). Intuitively, the yield distri-
bution function f describes how likely a fruit measured at
a LMD of location 〈mlat,mlong〉 may be picked from the
location 〈plat, plong〉. Given a set of picking records D, the
yield rate at the location 〈plat, plong〉 is as follows:

y(plat, plong) =
∑

〈w,mlat,mlong,ts〉∈D

w · f(plat, plong,mlat,mlong)

(2)

Let B be all the picking records stored at the databases,
the yield rate in a field F during a time range I may be
computed as follows:

y(plat, plong) =∑
〈w,mlat,mlong,ts〉∈B∧〈mlat,mlong〉∈F∧ts∈I

w · f(plat, plong,mlat,mlong)

(3)
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3.2 Defining yield distribution functions

For a professional fruit harvesting operation, the pattern
of harvesting activities are usually well planned to maxi-
mize the harvesting productivity. To improve the precision
of yield mapping, our system enables practitioners to cus-
tomize yield distribution functions based on the temporal
and spatial patterns of their harvesting operations.

Many factors may impact the pattern of harvesting ac-
tivities. One of such key factors is the canopy architec-
ture of trees. Since yield is a result of plant photosynthe-
sis process and the plant’s canopy architecture impacts how
the leaves receive sunlight, plants of speciality crops may
be trained to achieve certain canopy architectures for im-
proving yield. Canopy architecture also impacts how trees
are planted and fruits are harvested. For trees with a tra-
ditional cone-shaped canopy architecture, pickers generally
use ladders to retrieve fruits at the top branches of trees.
It takes times for pickers to climbing up/down ladders and
to move them from tree to tree. If not handled carefully,
ladders may also pose safety risk. Recently Whiting et al.
developed the Upright Fruiting Offshoot (UFO) architec-
ture, a novel canopy architecture for Cherry. Figure 3 shows
the UFO canopy architecture for Cherry. Briefly speaking,
Cherry trees with the UFO architecture are trained to grow
as 2-dimension wall, instead of a traditional cone-shaped
canopy. The UFO architecture has been shown to improve
the yield as well as harvest labor efficiency [11]. A cherry
tree with the UFO architecture is pruned to have a maximal
height within arm’s reach. Pickers move along the “pick-
ing aisle” between two “walls” of the Cherry trees, picking
fruits without ladders.

Figure 4 illustrates the yield distribution functions we
used for mapping yield in orchards with a traditional and
the UFO architecture, respectively. In an orchard using a
traditional cone-shaped canopy architecture, workers pick
up fruits from the trees adjacent to a LMD. The further a
tree is away from a LMD location, The less likely a fruit
weighted at the LMD would come from that tree. In an or-
chard using the UFO architecture, the probability of a fruit
coming from a tree is decided by the distance on the aisle
between the tree and the LMD that weights the fruit. Note
that the yield distribution function is bounded to the walls
enclosing the “picking aisle”, as these walls represent phys-
ical barriers for pickers to walk through.

In our experiment, we use 2-dimension Gauss distribu-
tion function as the yield distribution function for an or-
chard with a traditional canopy architecture. The function
is defined as follows:

f(plat, plong,mlat,mlong) =
e
−
(
γ(plat,plong,mlat,mlong)

2

2·σ2

)
(2 · π · σ2)

(4)

where γ(plat, plong,mlat,mlong) is the distance be-

Figure 5. Yield map for a traditional orchard
using the YDF in equation (4)

tween p and m, and σ2 is the variance. Figure 5 shows a
yield map for an orchard with traditional canopy architec-
ture, using the yield distribution function in (4).

For an orchard with the UFO canopy architecture, we
use a distribution function which uses a Gauss distribution
along “picking aisle”, and is bounded between walls enclos-
ing the aisle. Without loss of generality, let us consider an
orchard with the trees being planted (and thus picking aisle)
along the longitude, that is, on the north/south line. The
yield distribution function is defined as follows:

f(plat, plong,mlat,mlong) =
e
−
(
α(plat,mlat,mlong)

2

2·σ2

)

(b·σ·
√
2·π) if β(plong,mlong,mlat) ≤ b

2

0 Otherwise
(5)

Where σ2 is the variance, b is the distance between two
adjacent walls of trees (i.e. the width of the picking aisle),
β(plong,mlong,mlat) = γ(mlat, plong,mlat,mlong), and
α(plat,mlat,mlong) = γ(plat,mlong,mlat,mlong). In-
tuitively, β(plong,mlong,mlat) and α(plat,mlat,mlong)
specify the latitudinal (east/west) and longitudinal (north/-
south) distances between a location and a LMD, respec-
tively. Figure 6 shows a yield map for an orchard with
traditional canopy architecture, using the yield distribution
function in Equation 5.

4 Multi-Tenancy Software Architecture

A major challenge in developing a cloud-based agricul-
ture information system is how to serve multiple customers
(orchards) simultaneously, each of which generates a large
volume of data on-the-fly from an array of sensors and other
sources. In addition, a major concern among early adopters
of cloud-based agriculture information systems is data pri-
vacy. The data collected from a farming operation often
contain sensitive and proprietary information that a grower
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Figure 6. Yield map for a UFO orchard using
the YDF in equation (5)
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Figure 7. Multi-Tenancy Software Architec-
ture

may not want to share. To address these issues, we devel-
oped a multi-tenancy software architecture for our system.
The multi-tenancy technology (cf. [12]) has been studied
and used to increase the scalability and maintainability of
a web application. At the core of the multi-tenancy tech-
nology is a set of techniques that enable a single software
application to serve multiple customers simultaneously, us-
ing datasets specific to each customer.

Figure 4 shows the multi-tenancy software architecture
of our system. The data tables in our database are organized
into one of the following two sets: (a) global data compris-
ing data tables accessible to all the users with an appropriate
accessible right. Examples of such global data include GIS
data such as the terrain and field data, and the account data
used to verify a user’s identity; and, (b) grower-specific data
comprising data tables that are only accessible to a grower.
In the cloud deployment of our system, the same software
application is running on all the hosts. When a grower ac-
cesses our website, his/her request will be directed by a load
balancer to a host. The website module of our application

running on the host authenticates the user, using the account
data in the global dataset. When a grower accesses a yield
map of his orchard, the data-processing module retrieves the
yield data from the grower-specific dataset. Our role-based
access management ensures that only the grower can access
his grower-specific data set. Note that all the data tables in
the grower-specific data set use the same set of schema, re-
gardless of whom the data tables belong to. Thus, the data-
processing module can switch between different growers on
the grower-specific data set.

Our multi-tenancy software architecture brings several
benefits to our cloud-based system: first, the multi-tenancy
architecture leverages cloud computing for better scalabil-
ity. The number of hosts can be changed on demand, based
on the traffic from users; second, it improves the maintain-
ability of our system. Since all the hosts are running the
exactly same application, we only need to maintain a single
code base for the application; and, finally the architecture
improves the data privacy, as the yield and other operations
data are part of the grower-specific data only accessible to a
specific grower.

5 Implementation and Cloud-Based Deploy-
ment

Our cloud-based yield efficiency analysis system is de-
veloped with the Ruby-on-Rails application framework.
Ruby is a dynamic object-oriented programming language,
and Rails is open-source web application framework for
Ruby. Ruby-on-Rails refers to the web programming prac-
tice of developing a web application in Ruby using Rails
framework. Rails framework follows the Model-View-
Controller design pattern [13]. In our application, models
are used to create the underlying database schema. The web
interfaces of our applications are implemented as views, and
the access to the databases from views are defined by con-
trollers. Our application uses several off-the-shelf Ruby
libraries commonly known as Ruby gems, to simplify the
implementation of many components and to interface with
external applications such as Google Earth [14].

5.1 Cloud-Based Deployment

To improve scalability and accessibility of our system,
we designed and implemented our system specifically for
a cloud-based computing platform. We deployed our sys-
tem on Amazon Web Services (AWS), and it currently runs
in the Amazon EC2 cloud [15]. Through its management
console, AWS provides a set of management tools that en-
able us to scale up and down the number of instances on
demand. The cloud-based deployment also allows growers
to access and visualize the yield data anywhere using a web
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browser. More importantly, the scalability and accessibil-
ity of cloud-based deployment also enables our system to
support multiple orchard operations concurrently.

As discussed in Section 4, we developed a multi-tenancy
software architecture for improved scalability and data pri-
vacy in cloud deployment. We implemented the multi-
tenancy architecture with the assistance of Apartment gem
[16]. The gem compartmentalizes the grower-specific data,
and automatically handles the loading of grower-specific
data tables based on growers.

5.2 Customizing Yield Distribution Function

As we discussed in Section 3.2, a yield distribution func-
tion reflects the characteristics of an orchard operation. We
implemented a module that allowed a practitioner to easily
define a yield distribution function (YDF). The YDF mod-
ule allows a practitioner to write a yield distribution func-
tion in Ruby. The YDF module provides several pre-defined
parameters that define the distance and other metrics be-
tween a location and a LMD. A practitioner simply writes
the yield distribution function using these parameters as the
input variables. Our built-in YDF interpreter then replaces
these parameters with real measurements, as it goes through
each point on a field and decides the value associated with
each point using the custom-defined YDF.

For example, suppose that one wants to define a yield
distribution function for equation 4. The YFD module
provides three pre-defined parameters: dlon, the longitu-
dinal distance between a point p and a LMD m ; dlat,
the latitudinal distance between the two; and, dt2t, the
distance between the two. Hence, we have dt2t =
ρ(plat, plong,mlat,mlong). Let σ = 1, the custom-defined
yield distribution function is written as,

Math.exp(-((dt2t**2/2)))/(2*Math::PI)

As another example, consider the YFD in equation
5. Note that dlat = α(plat,mlat,mlong) and dlon =
βplong,mlong,mlat. Let b = 5 and σ = 1, the YFD may
be written as,

dlon <= 5/2? Math::E**(-(dlat**2/2))
/(5*(2*Math::PI)**1/2) : 0

6 Conclusion

Yield mapping is an important tool for visualizing and
analyzing yield efficiency in precision farming. Because
most of specialty crops are still harvested manually, a ma-
jor challenge of mapping yield for specialty crop is to col-
lect yield data without incurring significant overhead to a
manual harvesting process. We proposed and developed a

cloud-based yield efficiency monitoring and analysis sys-
tem for specialty crops. The system is built on the top of
a novel Labor Monitoring System we developed in [1]. By
reusing labor data otherwise already collected for the pur-
pose of labor monitoring, our cloud-based system computes
yield mapping without additional cost of collecting yield
data. We developed a method of deriving yield data from
labor data using customizable yield distribution functions.
A yield distribution function quantifies the geological dis-
tribution of fruits weighted at a LMD. Our system enables a
practitioner to define a yield distribution function based on
the characteristics of his/her harvesting operations. We dis-
cussed how different factors of an orchard operation, such
as canopy architecture, may impact the harvesting opera-
tions and hence change the yield distribution function. As
an example, we proposed two yield distribution functions
for orchards with traditional canopy architecture and the
UFO architecture [8], and used them in our experiments.

Our system has been deployed on Amazon Web Services
EC2, a cloud-based computing platform. It provides a real-
time and low-cost way for growers to monitor and analyze
yield efficiency in orchards, from a web browser. For the
future research, we plan to further study the benefits of the
cloud-based data reuse and integration, by integrating yield
mapping with other sensor data collected from fields. This
will provide an intuitive tool for growers to assess the re-
lation between yield and other factors measured by these
sensor data.
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